
iWay
iWay Data Adapter Administration for MVS and VM
Version 5.2.0

DN3501103.0103

EDA, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information Builders logo,
Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are registered trademarks,
and iWay and iWay Software are trademarks of Information Builders, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trademarks. In most, if not
all cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s
intent to use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any
of these names other than to refer to the product described.

Copyright © 2003, by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed in the U.S.A.

Preface
This documentation describes the iWay Data Adapter Administration for MVS and VM,
presents general information about data management, and provides specific information
about customizing individual data adapters. It is intended for data administrators and
others who create and maintain data sources and the Server Catalog.

How This Manual Is Organized
This manual includes the following chapters:

Chapter/Appendix Contents

1 Data Adapters Describes the functions of a data adapter and the process
of sending data requests to a server; also provides a list of
supported data sources.

2 Data Management Provides you with an understanding of the server data
administration, issues and options of general data
administration, and functionalities of various data
adapters.

3 Getting Started in
ADABAS

Discusses how ADABAS data is mapped to its
corresponding server counterparts.

4 Getting Started in
CA-DATACOM/DB

Discusses CA-DATACOM/DB and server concepts, and
how CA-DATACOM/DB elements correspond to their
server counterparts.

5 Getting Started in
CA-IDMS

Discusses CA-IDMS and server concepts, and how CA-
IDMS elements correspond to their server counterparts.

6 Getting Started in
CA-IDMS/SQL

Describes CA-IDMS/SQL Server Commands and Data
Sources, and how to establish access control.

7 Getting Started in
DB2

Describes DB2 Server commands, Data Sources, Access
Control, how to use the CREATE SYNONYM command,
how to use Thread Control Commands, and provides a list
of dialogue manager variables.

8 Getting Started in
IMS

Discusses IMS and server concepts, and how IMS
elements correspond to their server counterparts.
iWay Data Adapter Administration for MVS and VM iii

Documentation Conventions
The following conventions apply throughout this manual:

9 Getting Started With
Information
Manager/2

Provides an overview of the InfoMan Data Adapter,
hardware and software requirements, and configuration
instructions.

10 Getting Started in
MODEL 204

Provides an overview of the Model 204 Data Adapter,
installation instructions for the adapter, mapping
concepts, and a list of adapter environmental commands.

11 Getting Started in
MQSeries

Describes how to modify your server and
communications files for the MQ Series Data Adapter.

12 Getting Started in
NOMAD

Describes NOMAD mapping concepts, how to generate
answer sets, describe data sources, and create file
descriptions.

13 Getting Started in
Oracle

Explains Array blocking for SELECT and INSERT requests
and how to use Oracle DATABASE LINKs.

14 Getting Started in
SAP/R3

Describes SAP/R3 Server commands, tracing options, data
sources, and virtual fields.

15 Getting Started in
Teradata

Discusses Teradata Server commands, access control, SET
commands, and Thread Control commands.

Convention Description

THIS TYPEFACE or
this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable) in a text paragraph, a
cross-reference, or an important term.

this typeface Highlights a file name or command in a text paragraph that
must be lowercase.

this typeface Indicates a button, menu item, or dialog box option you can
click or select.
iv iWay Software

Preface
Related Publications
Visit our World Wide Web site, http://www.iwaysoftware.com, to view a current listing of
our publications and to place an order. You can also contact the Publications Order
Department at (800) 969-4636.

Customer Support
Do you have questions about iWay Data Adapter Administration for MVS and VM?

Call Customer Support Service (CSS) at (800) 736?6130 or (212) 736?6130. Customer
Support Consultants are available Monday through Friday between 8:00 a.m. and 8:00 p.m.
EST to address all your iWay questions. Our consultants can also give you general guidance
regarding product capabilities and documentation. Please be ready to provide your six-
digit site code number (xxxx.xx) when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site, http://
www.iwaysoftware.com. It connects you to the tracking system and known-problem
database at our support center. Registered users can open, update, and view the status of
cases in the tracking system and read descriptions of reported software issues. New users
can register immediately for this service. The technical support section of
www.informationbuilders.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

To learn about the full range of available support services, ask your iWay Software
representative about InfoResponse Online, or call (800) 969-INFO.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices; type one of them, not the
braces.

[] Indicates a group of optional parameters. None are required,
but you may select one of them. Type only the parameter in
the brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one of
them, not the symbol.

... Indicates that you can enter a parameter multiple times. Type
only the parameter, not the ellipsis points (…).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.
iWay Data Adapter Administration for MVS and VM v

Information You Should Have?
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code number (xxxx.xx).

• Your iWay Software configuration:

• The iWay Software version and release.

• The communications protocol (for example, TCP/IP or LU6.2), including vendor and
release.

• The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

• The database server release level.

• The database name and release level.

• The Master File and Access File.

• The exact nature of the problem:

• Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

• The error message and return code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For example,
if you are having problems joining two data sources, have you tried executing a query
containing just the code to access the data source?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or production?
Do you just have questions about functionality or documentation?
vi iWay Software

Preface
User Feedback
In an effort to produce effective documentation, the Documentation Services staff
welcomes any opinion you can offer regarding this manual. Please use the Reader
Comments form at the end of this manual to relay suggestions for improving the
publication or to alert us to corrections. You can also use the Documentation Feedback
form on our Web site, http://www.iwaysoftware.com.

Thank you, in advance, for your comments.

iWay Software Training and Professional Services
Interested in training? Our Education Department offers a wide variety of training courses
for iWay Software and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our World Wide Web site (http://www.iwaysoftware.com) or call (800) 969-INFO to speak to
an Education Representative.

Interested in technical assistance for your implementation? Our Professional Services
department provides expert design, systems architecture, implementation, and project
management services for all your business integration projects. For information, visit our
World Wide Web site (http://www.iwaysoftware.com).
iWay Data Adapter Administration for MVS and VM vii

viii iWay Software

Contents
1. Data Adapters .1-1

Functions of a Data Adapter .1-2
How a Data Adapter Works .1-2

Processing SQL Requests .1-3
Relational and Non-Relational Data Adapters .1-5
Supported Data Sources .1-7

2. Data Management .2-1
Describing Data Sources .2-2
Processing Requests .2-2
Master File .2-3

MISSING Attribute .2-6
Access File .2-7
Primary Key .2-8
Creating Virtual Fields .2-9
Cross-Century Dates . 2-10

Cross-Century Dates SET Commands . 2-11
Master File Syntax . 2-12

Additional Master File Attributes . 2-13
Documenting a Table . 2-14
Documenting a Column . 2-14
Supplying an Alternate Column Title . 2-16
Specifying an Online Help Message . 2-18

3. Getting Started in ADABAS .3-1
Mapping Concepts in ADABAS .3-2
Describing ADABAS Data Sources .3-2

Master File Attributes .3-2
Field Attributes .3-4
Access File Attributes .3-5
Comments in the Master and Access Files .3-7

CREATE SYNONYM Command for ADABAS .3-7
NEW Create Synonym Setting for Superdescriptors .3-8
Describing Metadata .3-9
New Logic for Selection Criteria .3-9

ISN Support . 3-10
ISN for Insert . 3-12

GFBID Support . 3-12
Using Predict With CREATE SYNONYM . 3-16
iWay Data Adapter Administration for MVS and VM ix

Contents
4. Getting Started in CA-DATACOM/DB .4-1
DATACOM Operating Environment .4-2
DATACOM Mapping Concepts .4-2
DATACOM Structures .4-3

Mapping DATACOM Structures in the Server .4-5
How the Data Adapter Creates DATACOM Call Syntax .4-8
GSETL and GETIT in DATACOM .4-8
SELFR and SELNR in DATACOM .4-8

Describing DATACOM Data Sources . 4-10
DATACOM Master Files . 4-11
DATACOM File Attributes . 4-11
DATACOM Segment Attributes . 4-12
DATACOM Field Attributes . 4-13
DATACOM Access Files . 4-14
DATACOM Header Logical Record . 4-15
DATACOM Segment Logical Record . 4-15
DATACOM Element Logical Record Security . 4-16

Describing Multi-File Structures . 4-17
Multi-File DATACOM Master File . 4-18
Multi-File DATACOM Access File . 4-19
Using Multiple Fields to Cross-Reference Data Sources in DATACOM . 4-20

Sample DATACOM DATADICTIONARY Master and Access Files . 4-21
DATACOM DATADICTIONARY PERSON-MASTER Indented Report . 4-21
DATADICTIONARY Element Field Report for EMDTA . 4-21
PERSON Master File and Access File in DATACOM . 4-22
DATACOM DATADICTIONARY PAYROLL-MASTER Indented Report . 4-22
DATADICTIONARY Element Field Report for PAYROLL . 4-23
PAYROLL Master File and Access File in DATACOM . 4-23
PERSPAY Master File and Access File in DATACOM . 4-24

DATACOM Access Control . 4-24
User Requirements Table (URT) in DATACOM . 4-24

DATACOM Element-Level Security . 4-25
Creating File Descriptions With AUTO DATACOM . 4-25
x iWay Software

Contents
5. Getting Started in CA-IDMS .5-1
 CA-IDMS Operating Environments .5-2
CA-IDMS Mapping Concepts .5-2
CA-IDMS Network Concepts .5-3
CA-IDMS Set-Based Relationships .5-3

Simple Set in CA-IDMS .5-6
Common Owner in CA-IDMS .5-7
Common Member in CA-IDMS .5-8
Multi-Member in CA-IDMS .5-9
Bill-of-Materials in CA-IDMS . 5-10
Loop Structures in CA-IDMS . 5-12
CALC-Based and Index-Based Relationships in CA-IDMS . 5-13

Summary of Network Relationships in CA-IDMS . 5-14
Logical Record Facility Concepts in CA-IDMS . 5-15

LRF Records as Descendants in CA-IDMS . 5-16
Describing CA-IDMS Data Sources . 5-18
CA-IDMS Master Files . 5-18

CA-IDMS File Attributes . 5-19
CA-IDMS Segment Attributes . 5-19
SEGNAME in CA-IDMS . 5-19
SEGTYPE in CA-IDMS . 5-19
PARENT in CA-IDMS . 5-20
CRFILE (Cross-referenced File) in CA-IDMS . 5-20
OCCURS and POSITION in CA-IDMS . 5-20
CA-IDMS Field Attributes . 5-20
FIELDNAME in CA-IDMS . 5-21
ALIAS in CA-IDMS . 5-22
USAGE in CA-IDMS . 5-23
ACTUAL in CA-IDMS . 5-23
GROUP Fields in CA-IDMS . 5-25
The IDMS Database Key . 5-25
CA-IDMS Remote Descriptions . 5-26
Defining Intra-Record Structures With the OCCURS Segment . 5-27
Describing the Repeating Group to the Server in CA-IDMS . 5-27
POSITION Attribute in CA-IDMS . 5-30
ORDER Field in CA-IDMS . 5-31

CA-IDMS Access Files . 5-32
CA-IDMS Access File Syntax . 5-33
Subschema Declaration Keywords in CA-IDMS . 5-33
CV Mode Only . 5-34
iWay Data Adapter Administration for MVS and VM xi

Contents
Overriding DBNAME and DICTNAME in IDMS . 5-35
Segment Declaration Keywords for Network Record Types in CA-IDMS 5-36
Segment Declaration Keywords for LRF Records in CA-IDMS . 5-39
Index Declaration Keywords for Network Record Types in CA-IDMS . 5-41

CA-IDMS Sample File Descriptions . 5-42
CA-IDMS Schema: EMPSCHM . 5-42
CA-IDMS Network Subschema: EMPSS01 . 5-51
CA-IDMS Master File for Network . 5-52
CA-IDMS Access File for Network . 5-57
CA-IDMS LRF Subschema: EMPSS02 . 5-58
CA-IDMS Master File for LRF . 5-61
CA-IDMS Access File for LRF . 5-62
Sample of a Partial LRF Record in CA-IDMS . 5-62
SPF Indexes in CA-IDMS . 5-63

CA-IDMS Access Control . 5-64
CA-IDMS File Retrieval . 5-64
CA-IDMS Retrieval Subtree . 5-64
Retrieval Sequence With Unique Segments in CA-IDMS . 5-65
The Effects of Screening Conditions in CA-IDMS . 5-66
Screening Conditions With Unique Segments in CA-IDMS . 5-68
Short Paths in CA-IDMS . 5-68
Short Paths in Unique Descendants in CA-IDMS . 5-68
Short Paths in Non-Unique Descendants in CA-IDMS . 5-69
CA-IDMS Record Retrieval . 5-69
Entry Segment Retrieval of Network Records in CA-IDMS . 5-69
Retrieval by IDMS Database Key . 5-70
Retrieval by CALC Field in CA-IDMS . 5-70
Retrieval by IDMS Index . 5-71
SEQFIELD Parameter in CA-IDMS . 5-72
Retrieval by Area Sweep in CA-IDMS . 5-73
CA-IDMS Descendant Segment Retrieval of Network Records . 5-73
CA-IDMS Set-Based Retrieval . 5-74
CALC-Based Retrieval in CA-IDMS . 5-75
Index-Based Retrieval in CA-IDMS . 5-76
LRF Record Retrieval in CA-IDMS . 5-76
Creating File Descriptions With AUTOIDMS in CA-IDMS . 5-78
Generated Descriptions in CA-IDMS . 5-90
File and Segment Attributes in CA-IDMS . 5-91
Field Attributes in CA-IDMS . 5-92
Changes to the Generated Descriptions in CA-IDMS . 5-93
Search Order for the Parameter Log File in CA-IDMS . 5-94
Enhancements to AUTOIDMS in CA-IDMS . 5-94
xii iWay Software

Contents
Discontiguous Key Support in CA-IDMS . 5-95
Logical Record Facility (LRF) Support in CA-IDMS . 5-95
Extended Field Name Support in CA-IDMS . 5-95
Group Field Support in CA-IDMS . 5-95
Additional Repeating Group Support in CA-IDMS . 5-95
USAGE Format Enhancements in CA-IDMS . 5-96
“Smart” Segment, Field, and Alias Names in CA-IDMS . 5-96
Documentation in the Master File in CA-IDMS . 5-96
Enhancements in CA-IDMS . 5-97
Improved Performance in CA-IDMS . 5-97
CA-IDMS Installation . 5-97
Changing Initial Data Set Defaults in CA-IDMS . 5-97

6. Getting Started in CA-IDMS/SQL .6-1
Server Commands in CA-IDMS/SQL .6-2
CA-IDMS/SQL Session Control: The CONNECT Command .6-5

IDMS/SQL Session Control: Other Session Commands .6-5
CURRENT SCHEMA in CA-IDMS/SQL .6-5
TRANSACTION in CA-IDMS/SQL .6-6
Describing CA-IDMS/SQL Data Sources .6-7

CA-IDMS/SQL Master Files .6-7
MISSING Attribute in CA-IDMS/SQL . 6-11
CA-IDMS/SQL Access Files . 6-11
The Primary Key in CA-IDMS/SQL . 6-14

CA-IDMS/SQL Access Control . 6-15

7. Getting Started in DB2 .7-1
Server Commands for DB2 .7-2

Enabling DB2 Aliases .7-2
Supporting Parallel Processing .7-2
Designating a Default Storage Space for Tables .7-3
 Overriding Default Parameters for the DB2 Index Space .7-4
Returning Native DB2 Error Messages .7-4
Obtaining the Number of Rows Affected By an SQL Passthru Command7-5
Identifying the DB2 Application Plan .7-5
Conversion for DB2 .7-6
CLOB Activation in DB2 .7-7
BLOB Activation for DB2 (MVS) .7-8
BLOB Read/Write Support in DB2 (MVS) .7-8

Describing DB2 Data Sources .7-9
iWay Data Adapter Administration for MVS and VM xiii

Contents
DB2 Access Control . 7-10
DB2 CURRENT SQLID (MVS) . 7-10
DB2 Connection Support (DRDA) for Non-CLI DB2 . 7-11
DB2 CONNECT TO and Level 1: CONNECT . 7-12

CREATE SYNONYM Command for DB2 . 7-14
 Setting the Scope of Logical Units of Work (MVS) . 7-15

SET AUTOaction on Event Command in DB2 (MVS) . 7-15
AUTOCLOSE in DB2 . 7-16
AUTODISCONNECT in DB2 . 7-17

DB2 Data Adapter Dialogue Manager Variables . 7-17

8. Getting Started in IMS .8-1
IMS Hierarchical Structure .8-2

IMS Sequence Fields .8-3
IMS Secondary Indexes .8-3
IMS Logical Relations .8-3
IMS Search Fields .8-4
IMS Symbolic Pointers .8-4

IMS Access Methods .8-4
IMS Control Blocks .8-5

IMS Database Descriptions: The DBD .8-5
Defining an Application’s Access to Data Sources: The PSB .8-6
Describing a Data Source View and Communicating With IMS: The PCB 8-7
IMS Key Sensitivity .8-8
IMS Field Level Sensitivity .8-8
IMS Status Codes .8-8
IMS Key Feedback Area .8-8
Application Control Block in IMS .8-8

IMS DL/I Calls .8-9
IMS Segment Search Arguments .8-9
IMS Get Calls . 8-10

Mapping IMS Elements to the Server . 8-11
Describing the PSB: The FOCPSB . 8-11
Describing the Data Source: The IMS Master File . 8-12
Identifying the IMS Data Source . 8-13
Describing IMS Segments to the Server . 8-14
Describing IMS Fields to the Server . 8-16
Describing IMS Segments With Multiple Definitions to the Server . 8-19
Describing Variable Length IMS Segments to the Server . 8-21
Describing an IMS Secondary Index to the Server . 8-22
xiv iWay Software

Contents
Mapping IMS and Server Relationships . 8-25
IMS Logical Relationships . 8-26
Alternating Between IMS Data Sources . 8-26
SQL Joins in IMS . 8-27

Describing IMS Data Sources . 8-28
FOCPSBs in IMS . 8-28
Required FOCPSB Attributes . 8-29
Extended FOCPSB Attributes in IMS . 8-31

IMS Master Files . 8-35
SEGNAME in IMS . 8-36
SEGTYPE in IMS . 8-37
PARENT in IMS . 8-38
FIELD NAME in IMS . 8-40
ALIAS in IMS . 8-40
USAGE in IMS . 8-41
ACTUAL in IMS . 8-41
Using an IMS Secondary Index . 8-46
Segment Redefinition in IMS: The RECTYPE Attribute . 8-50
Variable Length IMS Segments: The OCCURS Segment . 8-53

IMS Sample File Descriptions . 8-61
IMS DI21PART . 8-62
IMS PATDB01 . 8-63
IMS EMPDB . 8-68

IMS Access Control . 8-76
IMS SET Command . 8-77

IMS PSB . 8-77
IMS Data Adapter Optimization . 8-78
IMS Record Selection Tests . 8-79

IMS Access Method Restrictions . 8-80
IMS Rules for Constructing SSAs From WHERE Tests . 8-81
Complex Screening Conditions in IMS . 8-82
Partial Key and Multi-Segment Requests in IMS . 8-86
Auto Index Selection . 8-89

IMS UPDATE . 8-92
General IMS UPDATE Guidelines . 8-92
Processing Not Supported in IMS UPDATE . 8-92
Commit and Rollback Processing in IMS . 8-95
Master File for IMS UPDATE . 8-96
iWay Data Adapter Administration for MVS and VM xv

Contents
9. Getting Started With Information Manager/2 .9-1
 InfoMan Data Adapter .9-2
IBM's Information/Management .9-2

Information/Management Access .9-2
InfoMan Data Adapter Functional Overview .9-3

How the Server Works With Information/Management .9-3
InfoMan Hardware and Software Requirements .9-4
Configuring the InfoMan Data Adapter .9-4

Server JCL for IBM Information/Management .9-4
Defining the InfoMan Data Adapter User ID and Session ID .9-6

PICA Parameters .9-6
Setting Up the InfoMan Data Adapter User ID, Privilege Class Name, and Session ID 9-7
Overriding the Default PICA Values in an Access File .9-8
Additional InfoMan Access File Parameters .9-8

InfoMan Access Control .9-9
Server Security in InfoMan .9-9
IBM Information/Management Database Security .9-9
The AUTOIMAN Configuration File, IMANCONF . 9-10

Editing IMANCONF . 9-10
Maintaining Multiple Configuration Files in InfoMan . 9-10
Other InfoMan Editing Options . 9-10

Describing InfoMan Data Sources . 9-11
Executing AUTOIMAN . 9-12
Working With AUTOIMAN . 9-12

Movement Within Screens in InfoMan . 9-13
Help in InfoMan . 9-13

Master File Generation Facility in InfoMan . 9-13
PIDT Selection Panel in InfoMan . 9-16

Entering Data on the PIDT Selection Panel . 9-18
Using the F6 Search and F5 Rfind Keys on the PIDT Selection Panel . 9-18
Field Selection for Retrieval PIDT Name in InfoMan . 9-20
Using the F6 Search and F5 Rfind Keys on the Field Selection Screen in InfoMan 9-22
F6 Search in InfoMan . 9-22
F5 Rfind in InfoMan . 9-23
Making Changes in Field Descriptions in InfoMan . 9-23
Selection in InfoMan . 9-24

Retrieval PIDT Name Confirmation in InfoMan . 9-24
Changing Your Selections in InfoMan . 9-25
Confirming Your Choices in InfoMan . 9-25
xvi iWay Software

Contents
10. Getting Started in MODEL 204 . 10-1
Overview . 10-2
Environment . 10-3
Ease of Use . 10-3
Efficiency . 10-3
Security . 10-4
Installing the MODEL 204 Data Adapter . 10-5

Linkage Editor Control Statements . 10-5
Preparing the Adapter Run-Time Libraries . 10-6

The MASTER Library . 10-6
The ACCESS Library . 10-6
The Adapter Load Library . 10-7
The ERRORS Library . 10-7

Meeting the Adapter Run-Time Requirements . 10-8
Specifying Account and File Passwords . 10-8

Mapping Concepts in MODEL 204 . 10-9
MODEL 204 Files With One Logical Record Type . 10-10
MODEL 204 Files With Multiple Logical Record Types . 10-11
MODEL 204 Files With Multiply-Occurring Fields . 10-12

Mapping MODEL 204 and Server Relationships . 10-13
Dynamic Joins . 10-14
Embedded Joins . 10-16
Joining Unrelated MODEL 204 Files . 10-19

MODEL 204 Master Files . 10-20
File Attributes . 10-20
Segment Attributes . 10-21
Field Attributes . 10-22
OCCURS Attributes . 10-25
The ORDER Field: Tracking Sequence Within Multiply Occurring Fields 10-26

MODEL 204 Access Files . 10-27
Account Declaration . 10-28
Segment Declarations . 10-29
Field Declarations . 10-34

Summary of Mapping Rules . 10-37
Advanced Reporting Techniques . 10-38
MODEL 204 HLI Calls . 10-38
Screening Conditions and MODEL 204 HLI Calls . 10-39

COUNT Processing . 10-44
iWay Data Adapter Administration for MVS and VM xvii

Contents
Adapter Environmental Commands . 10-45
M204ACCNT and M204PASS Commands . 10-45
MAXMBUFF Command . 10-46
FTBL Command . 10-47
MISSING Command . 10-47
READWOL Command . 10-48
SINGLETHREAD Command . 10-48
M204IN SET ? Query Command . 10-49
Data Adapter Tracing Facility . 10-49
Customized Security Exits for MVS . 10-49

11. Getting Started in MQSeries . 11-1
MQSeries Data Adapter . 11-2
MQSeries Master File Attributes . 11-2
MQSeries Access Control . 11-4

MQDEF Command . 11-4
Writing Data into the MQSeries Using the HOLD Command . 11-5
Reading Data from MQSeries . 11-6
CREATE SYNONYM for the MQ Series Adapter . 11-6
Retrieving Foreign Messages From a Queue . 11-7
MQMSGID Fuse Function . 11-8

12. Getting Started in NOMAD . 12-1
Mapping Concepts in NOMAD . 12-2

Hierarchical Structure in NOMAD . 12-2
How the Data Adapter Accesses NOMAD . 12-3
Answer Set Generation in NOMAD . 12-4

Cartesian Products (NOMAD) . 12-4
Describing Data Sources in NOMAD . 12-5

NOMAD Master Files . 12-6
MISSING Attribute in NOMAD . 12-9
Arrays in NOMAD . 12-10
NOMAD Access Files . 12-13

NOMAD Access Control . 12-15
NOMAD Security . 12-15
SET DBNAME Command for NOMAD . 12-15

Creating File Descriptions With AUTONMD . 12-17
xviii iWay Software

Contents
13. Getting Started in Oracle . 13-1
Server Commands for Oracle . 13-2

ORACHAR Setting . 13-4
CONVERSION for Oracle . 13-5

Enabling Array Blocking for SELECT and INSERT Requests for Oracle . 13-9
 Describing Oracle Data Sources . 13-11
Oracle Access Control . 13-12

Oracle User Authentication . 13-12
ENGINE SQLORA SET Commands for Oracle . 13-12
Connecting to an Oracle Database Server . 13-13
Using Local, Platform Dependent Connection Variables in Oracle . 13-14
Access to a Remote Database Using Oracle Net8/SQL*NET Version 2 13-14
SET DEFAULT_CONNECTION Command for Oracle . 13-14
Password Passthru Access for Oracle . 13-15
Using Operating System Authentication for Oracle . 13-15
SET CONNECTION_ATTRIBUTES Command Syntax for the Server Releases 13-16

Oracle Support for DATABASE LINKs . 13-17
Creating Synonyms for Oracle . 13-18

14. Getting Started in SAP/R3 . 14-1
Preparing the SAP R/3 Server Environment . 14-2

 Accessing Multiple SAP R/3 Systems . 14-3
Access Control . 14-3
 Describing SAP R/3 Data Sources . 14-4

SAP R/3 Master Files . 14-4
SAP R/3 Access Files . 14-8
The Primary Key in SAP R/3 . 14-9
Creating Virtual Fields in SAP R/3 . 14-9
Table Support . 14-11
Data Type Support . 14-11
Open/SQL Support . 14-13

 Tracing Options . 14-14

15. Getting Started in Teradata . 15-1
Server Commands for Teradata . 15-2
Teradata Master Files . 15-3
Teradata Access Control . 15-3
The SET CONNECTION_ATTRIBUTES Command for Teradata Data Adapter . 15-4
Creating Synonyms for Teradata . 15-5
Thread Control Commands for Teradata . 15-6

Index. I-1
iWay Data Adapter Administration for MVS and VM xix

Contents
xx iWay Software

CHAPTER 1

1.DATA ADAPTERS

Topics:

• Functions of a Data Adapter

• How a Data Adapter Works

• Relational and Non-Relational Data
Adapters

• Supported Data Sources

In client/server architecture, data adapters enable clients to
manage data from virtually any data source, and on any
operating system, through the use of SQL statements.

The client generates requests for data residing on the
server. The server acts as a source of data, and can accept
requests from multiple clients for data access and
manipulation. Client/server architecture divides a
traditional single system into a front-end and a back-end.
The workload is distributed between the client and the
server. Communications software establishes the link
between client and server, and interfaces to the desired
communications protocol.

A client application uses SQL as the standard access
language for requests to all relational and non-relational
data. Depending on the environment—that is, the
hardware and software employed throughout the
enterprise—an applicable communications protocol
transmits the request for data to the server, and then
returns the answer set to the client.

The server in client/server architecture is used for data
access and manipulation. The server receives a request for
data, processes it, and returns an answer set or message to
the client. Data adapters are among the various subsystems
that comprise a server.
iWay Data Adapter Administration for MVS and VM 1-1

Functions of a Data Adapter
Functions of a Data Adapter
The server uses data adapters to access data sources. The server receives SQL requests from
the client and passes them to the data adapter in a standard format. The data adapter takes
the request, transforms it into the native data manipulation language (DML), and then
issues calls to the data source using its API. In this way, the data adapter insulates the server
from details of the data source. An application can issue SQL statements or call stored
procedures.

Data adapters are available for many data sources. Every data adapter is specifically
designed for the data source that it accesses, and, as a result, is able to translate between
SQL and the DML of the data source. Data adapters provide solutions to product variations,
including product differences in syntax, functionality, schema, data types, catalogs, data
representations, message processing, and answer set retrieval.

How a Data Adapter Works
The data adapter manages the communication between the data interface and the data
source, passing data management requests to the data source and returning either answer
sets or messages to the requestor.

To perform these functions, the data adapter:

1. Translates the request to the applicable DML.

2. Attaches to the targeted data source, using standard attachment calls. The data
adapter then passes the request to the data source.

3. The data source processes the request.

4. The results or error conditions are returned to the client application for further
processing.
1-2 iWay Software

Data Adapters
Processing SQL Requests
A server can be configured to behave in different ways upon receipt of SQL requests from a
client application. A server handles SQL requests for data in the following ways, as
illustrated in the diagram on page 1-4:

• Direct Passthru. When Direct Passthru is enabled, the server passes SQL requests
directly to the specified RDBMS for processing. The name of the targeted RDBMS (the
database engine) is supplied in the server profile or, in some cases, by the client
application. A Full-Function Server can operate permanently in Direct Passthru mode
(set command in the server profile) or when invoked by a client application. The user is
responsible for activating and deactivating Direct Passthru as needed.

• SQL Processing. When the database engine is not set in the server profile or supplied
by a client application, Direct Passthru is not enabled. Instead, a Full-Function Server
invokes its default behavior: it accepts the incoming SQL request and verifies that it is
valid. Then the server determines if it can process the incoming SQL request:

• If the request meets certain requirements, the server passes it directly to the
RDBMS for processing. This is called Automatic Passthru.

• If the syntax of the request does not conform to the syntax of the RDBMS, the
server translates the request into DML and passes it to the data adapter. The data
adapter generates adapter-specific DML and passes the request to the RDBMS for
processing. This is called SQL translation.

Direct Passthru, Automatic Passthru, and SQL translation are all described in more detail in
the iWay SQL Reference manual.
iWay Data Adapter Administration for MVS and VM 1-3

How a Data Adapter Works
Dialect
Translation

SQL
Passthru

DML
Generation

SQL Statements

Valid SQL Valid Dialect-Specific SQL

SQL Translation Services

SQL Passthru Services
1-4 iWay Software

Data Adapters
Relational and Non-Relational Data Adapters
Data adapters can retrieve answer sets from both relational and non-relational data
sources. Since the architectures of relational and non-relational data structures vary, the
relational and non-relational data adapters adjust for these differences. For example,
relational data adapters are designed to handle data sources that contain data in rows and
columns in tables, while non-relational data adapters are designed to accommodate the
architecture of each distinct data source, for instance, a hierarchical or network data source,
or a sequential or indexed file system.

The following table lists key features of relational and non-relational data adapters:

Relational and non-relational data adapters:

• Allow the data source to perform the work required to join, sort, and aggregate data.
Therefore, the volume of data source-to-server communication is reduced, resulting in
better response times for users. The data adapter tries to optimize the queries as best it
can.

• Communicate with the data source through DML statements. You can view these DML
statements with traces provided by the trace facilities. These traces are helpful for
debugging your procedure or for data adapter performance analysis. Note that traces:

• Are common for all relational data adapters.

• Vary for non-relational data adapters to accommodate the differences in data
structures and DML calls.

• Support both DEFINE (virtual) fields and DBA.

Feature Relational Data
Adapters

Non-Relational Data
Adapters

DEFINE (virtual field) in
Master File

Yes Yes

Access Control Yes Yes

Transaction
Management
Commands

Yes No
iWay Data Adapter Administration for MVS and VM 1-5

Relational and Non-Relational Data Adapters
• Relational data adapters include a variety of COMMIT, connection, and thread control
commands that enable Database Administrators to control the opening and closing of
connections and choose when to commit or rollback transactions. This level of
transaction control is not supported by non-relational data adapters. In Full-Function
Server mode, COMMIT/ROLLBACK will be propagated to all relational data sources local
to the server. If the hub is active, a COMMIT will be issued against remote data servers
as well. All PREPARE handles are cleared (this is a Broadcast COMMIT).

To address these similarities and differences, the iWay Server Administration manual
contains:

• General components with information that is common to all data adapters, as well as
information that is common either to all relational or to all non-relational data adapters.

• Customized components with information that applies to specific data adapters.
1-6 iWay Software

Data Adapters
Supported Data Sources
The following are supported data sources:

IBM-Compatible Mainframes (MVS/VM)

• ADABAS

• CA-Datacom/DB

• DB2

• FOCUS

• CA-IDMS

• CA-IDMS/SQL

• IMS/DB-DL/1

• ISAM

• Millenium

• MODEL 204

• NOMAD

• Oracle

• SQL/DS

• Supra

• System 2000

• Teradata

• TOTAL

• QSAM

• VSAM
iWay Data Adapter Administration for MVS and VM 1-7

Supported Data Sources
1-8 iWay Software

CHAPTER 2

2.Data Management

Topics:

• Describing Data Sources

• Processing Requests

• Master File

• Access File

• Primary Key

• Creating Virtual Fields

• Cross-Century Dates

• Additional Master File Attributes

• Documenting a Table

• Documenting a Column

• Supplying an Alternate Column
Title

• Specifying an Online Help Message

As you manage your data, you may be required to modify
your server and communications configuration files. The
first step is understanding how and where data is described
and the roles of the server and data adapters in managing
the processing flow.
iWay Data Adapter Administration for MVS and VM 2-1

Describing Data Sources
Describing Data Sources
In order to access a table or view, you must first describe it using two files: a Master File and
an associated Access File.

Master Files and Access Files can represent an entire table or part of a table. Also, several
pairs of Master and Access Files can define different subsets of columns for the same table,
or one pair of Master and Access Files can describe several tables.

Note: In this manual, the term table refers to both base tables and views in data sources.
The Master File describes the columns of the data source table using keywords in comma-
delimited format. The Access File includes additional parameters that complete the
definition of the data source table. Some data adapters require both files to fulfill queries,
and to build the DML to access the non-SQL data sources.

Processing Requests
When requests are processed, control is passed from the server to a data adapter and back.
During the process, selected information is read from the Master and Access Files as
described below.

The server processes a request as follows:

1. The request is parsed to identify the table.

2. The Master File for the table is read.

3. The SUFFIX value in the Master File is checked (SUFFIX indicates the type of data
source).

4. Control is passed to the appropriate data adapter.

The data adapter then:

5. Locates the corresponding Access File.

6. Uses the information contained in the Master and Access Files to generate the DML
statements (if necessary) required to accomplish the request.

7. Passes the DML statements to the data source.

8. Retrieves the answer set generated by the data source.

9. Returns control to the server.

Depending on the requirements of the request, additional processing may be performed
on the returned data.
2-2 iWay Software

Data Management
Master File
A Master File describes a logical data source. A logical data source can be made up of one or
more physical data sources of the same type. Each segment is a physical data source.

Master Files contain three types of declarations:

The following guidelines apply:

• A declaration consists of attribute-value pairs separated by commas.

• Each declaration must begin on a separate line. A declaration can span as many lines as
necessary, as long as no single keyword-value pair spans two lines.

• Do not use system or reserved words as names for files, segments, fields, or aliases.
Specifying a reserved word generates syntax errors.

Syntax How to Specify a File Declaration in a Master File

A Master File begins with a file declaration, which has at least two attributes:

FILENAME (FILE)

Identifies the Master File.

SUFFIX

Identifies the data adapter needed to interpret the request.

The syntax for a file declaration is

FILE[NAME]=file, SUFFIX=suffix [,$]

where:

file

Is the file name for the Master File. The file name should start with a letter and be
representative of the table or view contents. The actual file must have a .mas extension,
but the value for this attribute should not include the extension. The file name without
the .mas extension can consist of a maximum of eight alphanumeric characters.

suffix

Identifies the data adapter needed to interpret the request. For example, SQLORA is the
value for the Oracle Data Adapter.

Declaration Type Description

File Names the file and describes the type of data source.

Segment Identifies a table, file, view, or segment.

Field Describes the columns of the table, view, or fields in the file.
iWay Data Adapter Administration for MVS and VM 2-3

Master File
Syntax How to Specify a Segment Declaration in a Master File

Each table described in a Master File requires a segment declaration. The segment
declaration consists of at least two attributes:

SEGNAME

Identifies one table.

SEGTYPE

Identifies the physical storage of rows and the uniqueness of column values.

The syntax for a segment declaration is

SEGNAME=segname, SEGTYPE=S0 [,$]

where:

segname

Is the segment name which serves as a link to the actual table name. It may be the
same as the name chosen for FILENAME, the actual table name, or an arbitrary name. It
can consist of a maximum of 8 alphanumeric characters.

The SEGNAME value in the Master File must be the same as the SEGNAME value
specified in the Access File, where the TABLENAME portion of the segment declaration
contains the fully-qualified name of the table.

S0

Indicates that the RDBMS is responsible for both physical storage of rows and the
uniqueness of column values (if a unique index or constraint exists). It always has a
value of S0 (S zero).

Syntax How to Specify a Field Declaration in a Master File

Each row in a table may consist of one or more columns. These columns are described in
the Master File as fields with the following primary field attributes:

FIELDNAME

Identifies the name of a field.

ALIAS

Identifies the full column name.

USAGE

Identifies how to display a field on reports.

ACTUAL

Identifies the data type and length in bytes for a field.
2-4 iWay Software

Data Management
MISSING

Identifies whether a field supports null data.

The syntax for a field declaration is

FIELD[NAME]=fieldname, [ALIAS=]sqlcolumn, [USAGE=]display_format,
 [ACTUAL=]storage_format [,MISSING={ON|OFF}], $

where:

fieldname

Is the name of the field. This value must be unique within the Master File. The name can
consist of a maximum of 48 alphanumeric characters including letters, digits, and
underscores. The name must begin with a letter. Special characters and embedded
blanks are not recommended. The order of field declarations in the Master File is
significant with regard to the specification of key columns. For more information, see
Primary Key on page 2-8.

Tip: Since the name appears as the default column title for reports, for client
applications, or EDADESCRIBE, select a name that is representative of the data.

It is not necessary to describe all the columns of the table in your Master File.

sqlcolumn

Is the full column name (the data adapter uses it to generate SQL statements). This
value must comply with the naming conventions for identifiers, where a name should
start with a letter and may be followed by any combination of letters, digits, or
underscores. Embedded spaces are not allowed.

display_format

Is the display format. The value must include the field type and length and may contain
edit options.

The data type of the display format must be identical to that of the ACTUAL format. For
example, a field with an alphanumeric USAGE data type must have an alphanumeric
ACTUAL data type.

Fields or columns with decimal or floating point data types must be described with the
correct scale (s) and precision (p). Scale is the number of positions to the right of the
decimal point. Precision is the total length of the field.

For the server, the total display length of the field or column includes the decimal point
and negative sign. In SQL, the total length of the field or column excludes the decimal
point and negative sign. For example, a column defined as DECIMAL(5,2) would have a
USAGE attribute of P7.2 to allow for the decimal point and a possible negative sign.

storage_format

Is the storage format of the data type and length in bytes. For more information on data
type support, see the iWay SQL Reference manual.
iWay Data Adapter Administration for MVS and VM 2-5

Master File
ON

Displays the character specified by the NODATA parameter for missing data. For related
information, see MISSING Attribute on page 2-6.

OFF

Displays blanks or zeroes for fields having no value. This is the default. See MISSING
Attribute on page 2-6.

MISSING Attribute
In a table, a null value represents a missing or unknown value; it is not the same as a blank
or a zero. For example, a column specification that allows null values is used where a
column need not have a value in every row (such as a raise amount in a table containing
payroll data).

• The default NODATA character is a period.

• A column in a table that allows null data does not need to include the NULL clause in its
table definition, since that is the default.

• In the Master File for that table, the column that allows null data must be described
with the MISSING attribute value ON. The default for this attribute is OFF, which
corresponds to the NOT NULL attribute in the table definition.

If the column allows null data but the corresponding field in the Master File is described
with the MISSING attribute value OFF, null data values appear as zeroes or blanks.
2-6 iWay Software

Data Management
Access File
Each Master File may have a corresponding Access File. The name of the Access File must be
identical to that of the Master File, but the extension will be .acx instead of .mas.

The Access File serves as a link between the server and the data source by providing the
means to associate a segment in the Master File with the table it describes. The Access File
minimally identifies the table and primary key (if there is one). It may also indicate the
logical sort order of data and identify storage areas for the table.

Syntax How to Specify a Segment Declaration in an Access File

The segment declaration in the Access File establishes the link between one segment of the
Master File and the actual table or view. Attributes that constitute the segment declaration
are:

SEGNAME

Identifies one table.

TABLENAME

Identifies the table or view. It may contain the owner ID as well as the table name.

KEYS

Identifies how many columns constitute the primary key.

KEYORDER

Identifies the logical sort sequence of data by the primary key.

The syntax for a segment declaration in an Access File is

SEGNAME=segname, TABLENAME=owner.tablename databaselink
 [,KEYS={n|0}] [,KEYORDER={LOW|HIGH}] ,$

where:

segname

Is the same value as the SEGNAME value in the Master File.

owner

Is the user ID by default.

tablename

Is the name of the table or view.

databaselink

Is the DATABASE LINK name to be used in the currently connected database server.
iWay Data Adapter Administration for MVS and VM 2-7

Primary Key
n

Is the number of columns that constitute the primary key. It can be a value from 0 to 16.
The default value is 0. For more information, see Primary Key on page 2-8.

LOW

Indicates an ascending primary key logical sort order. This value is the default.

HIGH

Indicates a descending primary key logical sort order.

Primary Key
A table’s primary key consists of the column or combination of columns whose values
uniquely identify each row of the table. In the employee table, for example, every employee
is assigned a unique employee identification number. Each employee is represented by one
and only one row of the table, and is uniquely identified by that identification number.

The primary key definition must be defined partly in the Master File and partly in the Access
File:

• The order of field declarations in the Master File is significant to the specification of key
columns. To define the primary key in a Master File, describe its component fields
immediately after the segment declaration. You can specify the remaining fields in any
order. In the Access File, the KEYS attribute completes the process of defining the
primary key.

• To identify the primary key, the data adapter uses the number of columns (n) indicated
by the KEYS attribute in the Access File and the first n fields described in the Master File.

Typically, the primary key is supported by the creation of a unique index in the SQL
language to prevent the insertion of duplicate key values. The data adapter itself does not
require any index on the column(s) comprising the primary key (although a unique index is
certainly desirable for both data integrity and performance reasons).
2-8 iWay Software

Data Management
Creating Virtual Fields
You can create virtual fields in a Master File for reporting purposes, based on existing
information in a database. These might be new numerical fields computed from existing
fields, or new character strings translated from existing strings. You can also classify ranges
of data field values in named categories, or invoke your own functions in calculations.
Virtual fields are dynamically evaluated at execution time.

You use the DEFINE command to accomplish these tasks.

Syntax How to Create Virtual Fields With the DEFINE Command

DEFINE fieldname/format [WITH fieldname]=expression ;$

where:

fieldname

Is a field name for the virtual field. It can consist of 1 to 48 characters. You must not
qualify the field name.

format

Provides the display format for the field and follows the rules for USAGE formats. This
operand is optional. If not specified, the default value is D12.2.

WITH fieldname

Must be coded when the expression is a constant. Any real field can be chosen from the
same segment the DEFINE is associated with.

expression

Can be either a mathematical or a logical statement. It can consist of constants,
database fields, and virtual fields. The expression must end with a semicolon followed
by a dollar sign (;$).

Place your DEFINE statements after all of the field descriptions in the segment. If you are
using the DESCRIPTION or TITLE attributes with virtual fields, you must place these
attributes on a separate line.
iWay Data Adapter Administration for MVS and VM 2-9

Cross-Century Dates
Example Defining a Virtual Field in a Master File

In the example that follows, the virtual field PROFIT is defined at the end of the segment
named BODY.

SEGMENT=BODY, SEGTYPE=S0 , PARENT=CARREC,$
 FIELDNAME=BODYTYPE ,ALIAS=BODYTYPE ,A12,A12,$
FIELDNAME=DEALER_COST ,ALIAS=DEALER_COST ,D8, D8 ,$
FIELDNAME=RETAIL_COST ,ALIAS=RETAIL_COST ,D8, D8 ,$
DEFINE PROFIT/D8 = RETAIL_COST - DEALER_COST
 ;DESC=NET_COST, TITLE='NET,COST' ,$

As a result of this DEFINE statement, you can use PROFIT as a field name in reports. PROFIT
is treated as a field with a value equal to the value of RETAIL_COST minus DEALER_COST.

Note:

• Since the complete data source needs to be read to calculate virtual fields, screening
conditions on virtual fields may incur additional overhead.

• Virtual fields in the Master File for relational and remote data sources will, if referenced
in a query, disable Automatic Passthru.

Cross-Century Dates
Many existing business applications use two digits to designate a year, instead of four
digits. When they receive a value for a year, such as 00, they typically interpret it as 1900,
assuming that the first two digits are 19, for the twentieth century. There is considerable
risk that date-sensitive calculations in existing applications will be wrong unless an
apparatus is provided for determining the century in question. This will impact almost
every type of application, including those that process mortgages, insurance policies,
anniversaries, bonds, inventory replenishment, contracts, leases, pensions, receivables, and
customer records.

The cross-century dates feature enables you to solve this problem at the file and field level
of your applications. You can retain your global settings while changing the file-level
settings for greater flexibility.

You can enable this feature:

• Using SET commands.

• At the file level in a Master File.

• At the field level in a Master File.
2-10 iWay Software

Data Management
Cross-Century Dates SET Commands
The server delivers SET commands that provide a means of interpreting the century if the
first two digits of the year are not provided:

SET DEFCENT
SET YRTHRESH

If the first two digits are provided, they are simply accepted and validated.

Syntax How to Implement a Cross-Century Date

The DEFCENT syntax is

SET DEFCENT=nn

where:

nn

Is 19 unless otherwise specified.

The YRTHRESH syntax is

SET YRTHRESH=nn

where:

nn

Is zero unless otherwise specified.

The combination of DEFCENT and YRTHRESH establishes a base year for a 100-year window.
Any 2-digit year is assumed to fall within that window, and the first two digits are set
accordingly. Years outside the declared window must be handled by user coding.

The default values for the two commands are SET DEFCENT=19, SET YRTHRESH=00. When
you provide a year threshold, years greater than or equal to that value assume the value
assigned by DEFCENT. Years lower than that threshold become DEFCENT plus 1.

To see how DEFCENT and YRTHRESH are applied to interpret 2-digit years, consider the
following:

SET DEFCENT=19, SET YRTHRESH=80

This set of commands describes a range from 1980 to 2079. If a 2-digit year field contains
the value 99, then the server interprets the year as 1999. If the year field is 79, then the year
is interpreted as 2079. If the year field is 00, then the year is interpreted as 2000.
iWay Data Adapter Administration for MVS and VM 2-11

Cross-Century Dates
Master File Syntax
Instead of using SET commands, you can include settings at the file level in a Master File, or
at the field level in a Master File.

Syntax How to Add Cross-Century Date Settings at the File Level

The FDEFCENT syntax is

{FDEFCENT|FDFC}=nn

where:

nn

Is 19, unless otherwise specified.

The FYRTHRESH syntax is

{FYRTHRESH|FYRT}=nn

where:

nn

Is zero, unless otherwise specified.

Syntax How to Add Cross-Century Date Settings at the Field Level

At the field level, DEFCENT and YRTHRESH can be added. The DEFCENT syntax is

{DEFCENT|DFC}=nn

where:

nn

Is 19, unless otherwise specified.

The YRTHRESH syntax is

{YRTHRESH|YRT}=nn

where:
nn

Is zero, unless otherwise specified.

Syntax How to Add Cross-Century Dates Using a DEFINE Command

DEFINE FILE EMPLOYEE
 fld/fmt [{DEFCENT|DFC} nn {YRTHRESH|YRT} nn] [MISSING...]=expression;
END

The DFC and YRT syntax must follow the field format information.
2-12 iWay Software

Data Management
Example Implementing Cross-Century Dates

The following example illustrates how century interpretation is implemented at both the
file level and field level in a Master File.

FILENAME=EMPLOYEE, SUFFIX=FOC, FDEFCENT=20, FYRTHRESH=66,$
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DEFCENT=19,
YRTHRESH=75,$

The next example illustrates the conversion of a 2-digit year field with the FOCUS DEFINE
command:

DEFINE FILE EMPLOYEE
ESHIRE_DATE/YYMD = HIRE_DATE; (The format of HIRE_DATE is I6YM.)
ESHIRE DFC 19 YRT 80 = HIRE_DATE;
END

Additional Master File Attributes
The following attributes enable you to provide descriptive information about tables and
columns.

REMARKS

Is an optional attribute for documenting tables.

DESCRIPTION

Is an optional attribute for documenting columns.

TITLE

Is an optional attribute for supplying an alternate column title on a report to replace
the FIELDNAME value, which is normally used.

For the server, client tools using the API or ODBC will not use the TITLE attribute. The
TITLE attribute is available only when directly querying the server catalog, or when
using WebFOCUS Developer Studio.

HELPMESSAGE

Is an optional attribute enabling you to specify an online help message for a field on a
data entry screen.

Note: HELP MESSAGE is available only for FOCUS data maintenance applications.
iWay Data Adapter Administration for MVS and VM 2-13

Documenting a Table
Documenting a Table
The REMARKS attribute enables you to document a table.

Syntax How to Document a Table

REMARKS=remarks ,$

where:

remarks

Is one line of text. It can consist of a maximum of 78 characters.

If the text contains a comma, you must enclose the text in single quotation marks.

The REMARKS attribute cannot span more than one line in the Master File. If necessary,
move the entire attribute to a line by itself.

Example Documenting an Oracle Table

The following example shows how to document the Oracle table, SAMPLE.

FILE=SAMPLE,SUFFIX=SQLORA,REMARKS=This is a sample Oracle table.,$

Documenting a Column
The DESCRIPTION attribute enables you to provide a comment for a column in a table.

You can also add documentation to a column declaration—or a segment or table
declaration—by typing a comment following the terminating dollar sign. You can even
create an entire comment line by inserting a new line following a declaration and placing a
dollar sign at the beginning of the line. For the server, a comment added in this manner will
not be available to any client application.

If you are using DEFINE fields in a Master File, you must place the DESCRIPTION attribute on
a line by itself. The semicolon after the DEFINE must appear on the same line as
DESCRIPTION=.
2-14 iWay Software

Data Management
Syntax How to Document a Column

DESC[RIPTION]=description ,$

where:

description

Is one line of text. It can consist of a maximum of 44 characters.

If the text contains a comma, you must enclose the text in single quotation marks.

The DESCRIPTION attribute cannot span more than one line in the Master File. If
necessary, move the entire attribute to a line by itself.

Tip: Whenever possible, place the description on the same line with the attributes
FIELDNAME and ALIAS, to conserve space.

Example Documenting a Column

The following example shows how to provide a description for the column UNITS. The
single quotation marks are required because the description contains a comma.

FIELD=UNITS,ALIAS=QTY,FORMAT=I6,DESC='This is quantity sold, not
returned',$

Example Documenting a DEFINE Field

The following example shows how to provide a description for the DEFINE field
ITEMS_SOLD.

DEFINE ITEMS_SOLD/D8=ORDERED-INVENTORY
;DESC=DAMAGED ITEMS NOT INCLUDED,$
iWay Data Adapter Administration for MVS and VM 2-15

Supplying an Alternate Column Title
Supplying an Alternate Column Title
When you generate a report, each column title in the report defaults to the name of the
column as it appears in the table. However, you can change the default column title by
specifying the TITLE attribute.

For the server, client tools using the API or ODBC will not use the TITLE attribute. The TITLE
attribute is available only when directly querying the server catalog, or when using
WebFOCUS (Windows version).

You can override both the FIELDNAME and TITLE attributes with an AS phrase in your report
request. To override an existing TITLE attribute, use the SET TITLE command. To control
whether the TITLE attribute is propagated in the Master File of a HOLD file, use the SET
HOLDATTR command.

The TITLE attribute has no effect in a report if the column is used with a prefix operator such
as AVE. You can supply an alternate column title for columns with prefix operators by using
the AS phrase.

If you are using DEFINE fields in a Master File, you must place the TITLE attribute on a line by
itself. The semicolon after the DEFINE must appear on the same line as TITLE=.

Syntax How to Change the Default Column Title

TITLE='title' ,$
TITLE='title,title,...' ,$
TITLE='title /' ,$

where:

title

Is any string that consists of a maximum of 64 characters.

You can split the text across as many as five separate lines. Use single quotation marks
to delimit the text, and commas to divide the text into separate lines on the report
output.

You can include blanks at the end of an alternate column title by entering a slash (/) in
the last position that will be blank, followed by a closing single quotation mark.

The TITLE attribute cannot span more than one line in the Master File. If necessary,
move the entire attribute to a line by itself.
2-16 iWay Software

Data Management
Example Changing the Default Column Title

The following example shows how to replace the default column title, LNAME, with a title of
Client Name.

FIELD=LNAME,ALIAS=LN,FORMAT=A15,TITLE='Client Name',$
Client Name

Example Changing the Default Column Title to a Two-Line Column Title

The following example shows how to replace the default column title, LNAME, with a two-
line column title of Client Name.

FIELD=LNAME,ALIAS=LN,FORMAT=A15,TITLE='Client,Name',$
Client
Name

Example Controlling the Underline for a Column Title

The following example shows how to control the length of the underline for an alternate
column title.

FIELD=LNAME,ALIAS=LN,FORMAT=A15,TITLE='Client,Name /',$
Client
Name

Example Specifying a Column Title for a DEFINE Field

The following example shows how to replace the default column title for the DEFINE field,
ITEMS_SOLD, with a two-line column title of Items Sold.

DEFINE ITEMS_SOLD/D8=ORDERED-INVENTORY
;TITLE='Items,Sold',$
Items
Sold

iWay Data Adapter Administration for MVS and VM 2-17

Specifying an Online Help Message
Specifying an Online Help Message
The HELPMESSAGE attribute enables you to specify an online help message for a field on a
data entry screen. It is available only for FOCUS data maintenance applications.

Messages specified with the HELPMESSAGE attribute appear in the TYPE area of the
CRTFORM when you:

• Enter a value for a database field that is invalid according to the criteria defined by the
ACCEPT attribute.

• Enter a value for a database field that fails a VALIDATE test.

• Enter a value for a database field that causes a format error.

• Place the cursor in a data entry field and press a help key.

Regardless of the condition that triggers the display of the help message, the same
message will display.

Syntax How to Specify a Help Message

HELP[MESSAGE]=helpmessage ,$

where:

helpmessage

Is one line of text. It can consist of a maximum of 78 characters.

You can use all characters and digits. If the text contains a comma, you must enclose
the text in single quotation marks. Leading blanks are ignored.

The HELPMESSAGE attribute cannot span more than one line in the Master File. If
necessary, move the entire attribute to a line by itself.

Example Displaying a Help Message to List Valid Values for a Column

The following example shows how to display a help message when the DEPARTMENT value
is other than MIS, PRODUCTION, or SALES. DEPARTMENT has an ACCEPT attribute which
tests values entered for it.

FIELDNAME=DEPARTMENT,ALIAS=DPT,FORMAT=A10,
 ACCEPT=MIS PRODUCTION SALES,
 HELPMESSAGE='DEPARTMENT MUST BE MIS, PRODUCTION, OR SALES',$

If you enter a value other than MIS, PRODUCTION, or SALES for DEPARTMENT on a
CRTFORM, both the default message and help message display on the screen:

DATA VALUE IS NOT AMONG ACCEPTABLE VALUES FOR DEPARTMENT
DEPARTMENT MUST BE MIS, PRODUCTION, OR SALES
2-18 iWay Software

Data Management
Example Displaying a Help Message When a Format Error Occurs

The following example shows how to display a help message when a format error occurs in
HIRE_DATE. Note that the format for HIRE_DATE is integer.

FIELDNAME=HIRE_DATE,ALIAS=HDT,FORMAT=I6YMD,
HELPMESSAGE=THE FORMAT FOR HIRE_DATE IS I6YMD,$

If you enter alphanumeric characters for HIRE_DATE on a CRTFORM, both the default
message and help message display on the screen:

FORMAT ERROR IN VALUE ENTERED FOR FIELD HIRE_DATE
THE FORMAT FOR HIRE_DATE IS I6YMD
iWay Data Adapter Administration for MVS and VM 2-19

Specifying an Online Help Message
2-20 iWay Software

CHAPTER 3

3.Getting Started in ADABAS

Topics:

• Mapping Concepts in ADABAS

• Describing ADABAS Data Sources

• CREATE SYNONYM Command for
ADABAS

• ISN Support

• GFBID Support

These topics discuss how ADABAS data is mapped to its
corresponding server counterparts.
iWay Data Adapter Administration for MVS and VM 3-1

Mapping Concepts in ADABAS
Mapping Concepts in ADABAS
A Master File and Access File are required when accessing a non-relational data source such
as ADABAS. With Master Files and Access Files, ADABAS data segments are represented as
server segments.

Before Release 5.1.0, only the AUTOADBS Facility (based on ADABAS Predict) was able to
generate Master Files and Access Files on a mainframe system. Otherwise, generation of
these files had to be done manually.

Since Release 5.1.0, the CREATE SYNONYM command is available (based not only on
Predict, but on ADABAS FDT as well). This command extends the option of generating
Master Files and Access Files for ADABAS files beyond mainframe, to UNIX, Windows NT/
2000, and OpenVMS platforms.

The command requires ADABAS Release 5.0 or higher, and Predict Release 3.1.4 or higher.

Describing ADABAS Data Sources
You can create Master File and Access File attributes with the CREATE SYNONYM command.

Master File Attributes
The following Master File attributes describe the ADABAS data segments.

Master File
Attribute

Description

FILE The Master File name. May or may not match the file name in the
ADABAS DBMS.

SUFFIX Always ADBSINX.

SEGNAME The segment names in the description generated by CREATE SYNONYM
follow a logical format to provide uniqueness within the file.

SEGTYPE The root segment and cross-reference segment type. The SEGTYPE is
S0 for the root file and children with a non-unique IXFLD. The SEGTYPE
is U for a child with a unique IXFLD. The SEGTYPE for all PE and MU
fields is S0.

PARENT The value of SEGNAME of the parent record.

OCCURS Indicates the number of occurrences of a PE group or MU field. This
attribute will contain the ADABAS field name of the PE group or MU
field with the suffix C, which is the ALIAS of the counter field in the
parent segment.
3-2 iWay Software

Getting Started in ADABAS
Syntax How to Name Root Segments in the Master File

For the root segment of the ADABAS file (ACCESS=ADBS), the segment name is

Snn

where:

nn

Is a two-digit number indicating the order in which the file was selected.

The first file (selected as the root from the File Selection Menu) has SEGNAME=S01.
Subsequent files used in the same description (selected as children from the File Selection
Menu) will have SEGNAME=S02, SEGNAME=S03, and so on.

Syntax How to Name Segments For PE Groups and MU Fields

The segment names for PE groups and MU fields have the format

aammnn

where:

aa

Is the ADABAS name of the field.

mm

Is a two-digit number that indicates the order in which the PE group or MU field
appears in the PREDICT description of the file.

nn

Is the order number used for the root segment.

For example, SEGNAME=BE0201 describes the segment for the field BE, which is the second
(02) PE group or MU field described in the first segment (01).
iWay Data Adapter Administration for MVS and VM 3-3

Describing ADABAS Data Sources
Field Attributes
The following field attributes describe the ADABAS data segments.

Field Attribute Description

FIELD The field name from the Predict dictionary (if used) or generated
automatically (xx_FIELD).

GROUP Identifies fields described as simple groups or PE groups. It is the
field name from the Predict dictionary (if used) or is generated
automatically (xx_GROUP).

ALIAS The actual ADABAS short name. It can be detailed for fields
without standard length (count fields). For order fields, it has the
value ORDER.

USAGE The USAGE format and length of the field. This attribute
determines how the value is displayed in reports. Values are
determined based on the ACTUAL format and length, and then
may be detailed by value from the Predict dictionary (if used). For
fields without standard length, it has the maximal value for the
format.

ACTUAL The field standard format and length as stored in the ADABAS FDT
for the given file. For fields without standard length, it has the
maximal value for the format. For fields with format A and option
LA, the ACTUAL length must have a value greater than 253. A value
of 500 is assumed.

INDEX=I Indicates the field is a superdescriptor, subdescriptor, or simple
descriptor.

TITLE The column heading used in reports. This attribute is included
only if the Predict dictionary is used and the field has a column
heading value in the Predict dictionary.

GROUP Identifies fields described as simple groups or PE groups.

$GRMU A group that contains a PE group or an MU field.

$2LONG A group field whose total length exceeds the maximum of 4096
characters supported by the server.
3-4 iWay Software

Getting Started in ADABAS
Access File Attributes
The following Access File attributes describe the ADABAS data segments:

$PEMU A PE group that contains an MU field, or is a group field that
contains a PE group or an MU field. In both cases, the field cannot
be used to retrieve data using the ADABAS interface.

$PH A phonetic descriptor. The ADABAS interface does not support
phonetic descriptors.

$HY A hyper descriptor. The ADABAS interface does not support hyper
descriptors.

$FIELD The field that belongs to the commented group or
superdescriptor composed of partial fields (NOP).

Field Attribute Description

Access File
Attribute

Description

RELEASE Indicates the ADABAS release. If RELEASE is 5 or less, then FILENO
is 1 – 255 and DBNO is 0 – 255. If RELEASE is 6 or greater, the
interface supports two-byte FILENO (1- 5000) and DBNO
 (1 – 65535).

OPEN Determines whether the data adapter should issue ADABAS
OPEN and CLOSE calls for each report request.

SEGNAM The segment name as described in the Master File.

ACCESS Specifies the access method for the segment. ADABAS indicates
segments that contain non-repeating data. PE indicates
segments that describe periodic groups. MU indicates segments
that describe multi-value fields.

DBNO Specifies the ADABAS database number. On UNIX,
Windows NT/2000, and OpenVMS, this attribute must be
included in the Access File. DBNO depends on RELEASE. DBNO is
0 – 255 if RELEASE is 5 or less, or 1 – 65535 if RELEASE is 6 or
greater.

FILENO The ADABAS file number. If RELEASE is 5 or less, then FILENO is
 1 – 255, or 1 – 5000 if RELEASE is 6 or greater.
iWay Data Adapter Administration for MVS and VM 3-5

Describing ADABAS Data Sources
UNQKEYNAME The field name used as the unique key during file updating. The
first unique indexed field from the root segment is used. If it does
not exist, the value from SEQFIELD is used.

CALLTYPE FIND. Creates an additional commented line with CALLTYPE=RL
if the Predict file view contains SEQFIELD data or the root
segment contains an index field. The line with the preferable
value of CALLTYPE can be chosen depending on the method
used to retrieve the data from the database.

SEQFIELD The SEQFIELD name taken from Predict (if it was used), or the first
unique indexed field, or the first indexed field from Root
segment. If CALLTYPE=FIND, then SEQFIELD is not filled.

FIELD Describes a descriptor, superdescriptor, subdescriptor, or a
component of a superdescriptor.

TYPE Indicates the type of descriptor for FIELD. Values are SPR for
superdescriptors, NOP for subdescriptors or superdescriptors
composed of partial fields, or DSC for a simple descriptor.

NU Indicates whether the field uses null suppression. Values are YES
or NO.

PASS The ADABAS password for the file. This attribute can be added
manually.

KEYFLD Used for child segments only. This is the common field in the
parent segment used to relate two files.

IXFLD Used for child segments only. This is the common field in the
child segment used to relate two files.

Access File
Attribute

Description
3-6 iWay Software

Getting Started in ADABAS
Comments in the Master and Access Files
The generated Master and Access Files contain several commented entries. They are
provided for the client’s convenience and are not used by the server. Comments are
provided for the:

• CREATE SYNONYM time stamp and creator’s user ID (included in both the Master File
and Access File).

• Predict file name, file number, and DBID, if Predict was used.

• Headers before special fields: super/sub/hyper/phonetic descriptors or fields without
standard length.

• Fields not supported by the ADABAS interface.

• Component fields of superdescriptors that are composed of partial fields (described as
NOP type).

CREATE SYNONYM Command for ADABAS
The CREATE SYNONYM command automatically generates the Master File and Access Files
for ADABAS files and views based on information stored in the Field Definition Table (FDT)
in ADABAS and in the Predict dictionary (optionally).

The syntax is identical for mainframe, UNIX, Windows NT/2000, and OpenVMS platforms.

Syntax How to Use the CREATE SYNONYM Command for ADABAS

CREATE SYNONYM filename
FOR FILE=file-number[/predict-file-number[(predict-filename)]]
DBMS ADBSINX
DATABASE dbid[/predict-dbid]
[PARMS ‘GFBID | ISN’]
END

where:

filename

Is the name of Master and Access Files to be created. The maximum length is 8 bytes.

file-number

Is the number of the Adabas file used as the base for the Master and Access Files. The
range is from 1 to 5000.

predict-file-number

Is the number of the Adabas file where the Predict dictionary data is located. The range
is from 1 to 5000.
iWay Data Adapter Administration for MVS and VM 3-7

CREATE SYNONYM Command for ADABAS
predict-filename

Is the name of the view in the Predict dictionary that corresponds to the Adabas file
used. This name is used when it is different from the file name value. The maximum
length is 32 bytes.

ADBSINX

Is the SUFFIX that indicates the ADABAS data source.

dbid

Is the database ID (DBNO) for the Adabas DBMS that is accessed. The range is from 1 to
65535.

predict-dbid

Is the database ID (DBNO) for the Adabas DBMS (Predict dictionary). The range is from 1
to 65535.

GFBID

Specifies that a field is generated in the MFD to specify ADABAS Global Format Buffer
ID values.

ISN

Specifies that a field is generated in the MFD to specify ADABAS Internal Sequence
Numbers (ISN).

NEW Create Synonym Setting for Superdescriptors
Setting the SYNONYM command to NEW instructs the ADABAS Data Adapter to use new
logic when:

• Describing metadata.

• Processing requests that can take advantage of superdescriptors for screening
conditions.

{SQL | TSO} ADBSINX SET SYNONYM {NEW | STD}
3-8 iWay Software

Getting Started in ADABAS
Describing Metadata
Superdescriptors are described in the MFD as groups. With the NEW SYNONYM format,
neither the groups nor their components (fields) will have field names specified in the MFD.
Aliases are populated using the ADABAS FDT (2 byte name). STD is the default value and
incorporates the usual CREATE SYNONYM behavior; it does not trigger the new logic for
requests utilizing superdescriptors. The following is an MFD example illustrating
superdescriptors Y6 and Y7 with the NEW synonym format:

GROUP= ,ALIAS=Y6 ,A2 ,A2 ,INDEX=I,$
FIELD= ,ALIAS=AF ,A1 ,A1 , ,$
FIELD= ,ALIAS=AG ,A1 ,A1 , ,$
GROUP= ,ALIAS=Y7 ,A22 ,A22 ,INDEX=I,$
FIELD= ,ALIAS=AF ,A1 ,A1 , ,$
FIELD= ,ALIAS=AG ,A1 ,A1 , ,$
FIELD= ,ALIAS=AC ,A20 ,A20 , ,$

Two new AFD keywords, SUPER and NUMFLDS, are introduced to describe a
superdescriptor. SUPER specifies the native ADABAS two-byte field name of the
superdescriptor, and NUMFLDS defines the number of participating fields. Descriptions of
all these fields immediately follow the SUPER statement. The following is an AFD example
illustrating the specification of superdescriptors Y6 and Y7 and their components:

SUPER = Y6 ,NUMFLDS=2 ,$
 FIELD=AF_FIELD ,TYPE =,NU=NO ,$
 FIELD=AG_FIELD ,TYPE =,NU=NO ,$
SUPER = Y7 ,NUMFLDS=3 ,$
 FIELD=AF_FIELD ,TYPE =,NU=NO ,$
 FIELD=AG_FIELD ,TYPE =,NU=NO ,$
 FIELD=AC_FIELD ,TYPE =,NU=NO ,$

New Logic for Selection Criteria
When a synonym contains the NEW syntax, the ADABAS Adapter uses new logic to process
the selection criteria of requests involving that synonym. Screening conditions within the
request are analyzed, and the superdescriptor that covers the most high-order component
fields required by the selection criteria are used.

Note: It is necessary to specify CALLTYPE =RL in the AFD in order to take advantage of
superdescriptor-based access.

Example Using Superdescriptor Y6 in the L3 (Read Logical) Command

TABLE FILE EMP211
PRINT AF_FIELD AG_FIELD AC_FIELD AD_FIELD
IF AF_FIELD EQ 'S'
IF AG_FIELD EQ 'M'
END
iWay Data Adapter Administration for MVS and VM 3-9

ISN Support
Example Using Superdescriptor Y7 in the L3 (Read Logical) Command

TABLE FILE EMP211
PRINT AF_FIELD AG_FIELD AC_FIELD AD_FIELD
IF AF_FIELD EQ 'S'
IF AG_FIELD EQ 'M'
IF AC_FIELD EQ 'C'
END

ISN Support
The adapter can employ a new data retrieval strategy through Read Logical by Internal
Sequence Number (ISN) calls. It can also be used to determine the ISN of a record that was
read or that will be inserted into an ADABAS file. ISN-based access is applicable only if an
ISN field is described in the Master File. This field has a field name that is user-defined and
an ALIAS of ISN. The usage format is I, and the actual format must be I4. This field can be
defined only in a segment that contains non-repeating data:

FIELD=ISN_FIELD, ALIAS=ISN, I10, I4, $

The access method defined in AFD is ADBS.

Equality tests on the ISN field can be used to retrieve a single record when the report
request contains an equality operator in the selection test on an ISN list; the ISN field can
also be used as the cross-referenced field in the join to an ADABAS file.

ADABAS returns Response Code 113 if the record with the ISN defined in the test is not
present in the Address Converter for the file. The adapter returns the message record is not
found.

The ADABAS Adapter uses Read Logical by ISN (L1) calls to retrieve all records for the entry
segment when:

• The report request does not contain optimizable selection criteria on an inverted list.

• The Access File contains a SEQFIELD value for that segment whose value is equal to the
ISN field name.

For example, AFD ADATEST contains the following:

SEGNAM=S01, ACCESS=ADBS , ... ,SEQFIELD=ISN_FIELD ,$

ADABAS returns each record in ascending order by the value of the ISN (inverted list).

You can define the ISN field in the Master File manually or by using the CREATE SYNONYM
facility with option PARMS 'ISN'.
3-10 iWay Software

Getting Started in ADABAS
Syntax How to Test Equality on an ISN Field

SELECT AA_FIELD, AJ_FIELD FROM ADATEST

WHERE ISN_FIELD = 1100;

Note: The multi-fetch option is suppressed for this call.

Example How to Test Inequality on an ISN field

AFD ADATEST contains:

SEGNAM=S01, ACCESS=ADBS , ... ,SEQFIELD=AA_FIELD ,$

Read Logical by ISN (L1) is used as follows:

SELECT AA_FIELD, AE_FIELD FROM ADATEST
WHERE ISN_FIELD > 1100;

Read Logical by ISN (L1) calls to retrieve a subset of records for the entry segment when the:

• Report request contains the GE/GT relational operator in the selection test on an ISN
list.

• Report request does not contain any selection tests on an inverted list.

• Access File contains a SEQFIELD value for that segment.
iWay Data Adapter Administration for MVS and VM 3-11

GFBID Support
ISN for Insert
After issuing an Insert request on a file with an ISN field in the MFD, the resulting ISN
generated by ADABAS is displayed by the message:

FOC4592: (FOC4592) RECORD IS INSERTED WITH ISN : nnnnn

Example Issuing an Insert Request

SQL
INSERT INTO ADBTEST (AA_FIELD, AJ_FIELD)
 VALUES ('11111111', 'TAMPA');
END
ADBTEST ADBSINX ON 09/20/2002 AT 15.22.16
(FOC4592) RECORD IS INSERTED WITH ISN : 11
(FOC4566) RECORDS AFFECTED DURING CURRENT REQUEST : 1/INSERT

TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT = 1 UPDATED = 0 DELETED = 0

It is also possible to assign a value for the ISN field if the Insert request contains the ISN field
and the assigned value is not 0. The adapter issues an Adabas N2 Direct Call to assign this
ISN value to the inserted record.

ADABAS returns Response Code 113 if this value was already assigned to another record in
the file or if it is larger than the MAXISN in effect for that file.

GFBID Support
The ADABAS Adapter can optimize the performance of queries that use the same ADABAS
field lists repeatedly. Field lists are generated in ADABAS format buffers, and can be
retained.

Global Format Buffer ID (GFBID) support is applicable only if a GFBID field is present in the
Master File. This field has a user-defined field name, and an ALIAS of GFBID. This field is used
to determine the Global Format Buffer ID that will be defined in read requests with identical
field lists in the same database. The GFBID field has a Usage format of A8 and an Actual
format of A8. This field can be defined only in segments that contain non-repeating data.
The access method defined in AFD is ADBS.
3-12 iWay Software

Getting Started in ADABAS
Example Defining GFBID

FIELD=GID_FIELD, ALIAS=GFBID, A8, A8, $

Note:

• If the field list is changed but the same GFBID is used in a request, then incorrect results
can be displayed. In some cases, an error message about the possible mismatch
between the FDT and MFD is issued.

• If two requests have the same list of selected fields, but different fields are used in
selection criteria, then they must use different GFBID values.

The GFBID field can be defined in the Master File manually or using the CREATE SYNONYM
facility with option PARMS 'GFBID'.

Syntax How to Use GFBID

CREATE SYNONYM ADATEST FOR 11 DBMS ADBSINX DATABASE 3 PARMS 'GFBID'
END

The value of GFBID can be up to 8 bytes in length and must start with a digit or an
uppercase character. If GFBID is used in a request of a file that contains simple PE/MU
segments, it is applied to ADABAS calls to retrieve the field values from these segments. The
GFBID value will be “adjusted” for each non-ADBS segment by placing a segment number
in the last (8th) byte of the GFBID field. Calls to a “PE with MU child” or “MU with PE parent”
segment will not use GFBID values.

Note: To make the GFBID value unique within ADABAS, do not use 8 byte GFBID values for
these types of calls.

If a GFBID field is defined in the Master File, it can be used in a request as part of the
selection test. The adapter takes the GFBID value from the selection criteria, deactivates the
field, and removes it from the match array. The GFBID value is placed in the ADD5 field of
the ADABAS Control Block for the request. If the GFBID is applied to an ADABAS call, then
the field name ADD5 appears in the adapter trace. GFBID values that were issued in all
requests to the database are accumulated in the ADABAS internal queue. These values can
be removed from the queue by issuing the following adapter SET command:

ENGINE ADBSINX SET GFBID_OFF ALL/<value> DBID <number>

When a single <value> is in the SET command, then all values issued for “child” segments
are removed as well. If <value> contains blanks, then value must be in single quotes.

ALL clears all GFBID values.
iWay Data Adapter Administration for MVS and VM 3-13

GFBID Support
Example Using GFBID

MFD ADATEST contains:

FIELD=GID_FIELD, ALIAS=GFBID, A8, A8, $

Example 1: Global ID = ABC1

SQL
SELECT AA_FIELD, AJ_FIELD, ISN_FIELD, AQ0201_OCC, AR_FIELD, AS_FIELD,
AT_FIELD
FROM EMPLOYEES
WHERE ISN_FIELD > 1100 AND GID_FIELD = 'ABC1';
END

Result:
PAGE 1

AA_FIELD AJ_FIELD ISN_FIELD AQ0201_OCC AR_FIELD AS_FIELD AT_FIELD
-------- -------- --------- ---------- -------- -------- --------
30034517 DERBY 1105 1 UKL 6500 750
30034517 DERBY 1105 2 UKL 6800 1240
30034517 DERBY 1105 3 UKL 7100 1345
30034517 DERBY 1105 4 UKL 7450 1450
30034517 DERBY 1105 5 UKL 7800 1700
50005600 VIENNE 1106 1 FRA 165810 10000
50005300 PARIS 1107 1 FRA 166900 5400

NUMBER OF RECORDS IN TABLE= 7 LINES= 7

Example 2: Global ID = ABC1, but the field's list is changed

SQL
SELECT AA_FIELD, ISN_FIELD, AQ0201_OCC, AR_FIELD, AS_FIELD, AT_FIELD
FROM EMPLOYEES
WHERE ISN_FIELD > 1100 AND GID_FIELD = 'ABC1';
END

Result:

(FOC4567) POSSIBLE MISMATCH BETWEEN FDT AND MFD : file=19879548
(FOC4591) ERROR RETURN ON READ BY ISN : S01 /999:ffffffcd001d00

NUMBER OF RECORDS IN TABLE= 0 LINES= 0

Example 3: Remove value 'ABC1' from ADABAS

ENGINE ADBSINX SET GFBID_OFF ABC1 DBID 3
3-14 iWay Software

Getting Started in ADABAS
Example 4: Repeat request from example 2

SQL
SELECT AA_FIELD, ISN_FIELD, AQ0201_OCC, AR_FIELD, AS_FIELD, AT_FIELD
FROM EMPLOYEES
WHERE ISN_FIELD > 1100 AND GID_FIELD = 'ABC1';
END

Result:

PAGE 1

AA_FIELD ISN_FIELD AQ0201_OCC AR_FIELD AS_FIELD AT_FIELD
-------- --------- ---------- -------- -------- --------
30034517 1105 1 UKL 6500 750
30034517 1105 2 UKL 6800 1240
30034517 1105 3 UKL 7100 1345
30034517 1105 4 UKL 7450 1450
30034517 1105 5 UKL 7800 1700
50005600 1106 1 FRA 165810 10000
50005300 1107 1 FRA 166900 5400

NUMBER OF RECORDS IN TABLE= 7 LINES= 7

Example 5: Remove all GFBID's values for Database 3 from ADABAS
ENGINE ADBSINX SET GFBID_OFF ALL DBID 3
iWay Data Adapter Administration for MVS and VM 3-15

GFBID Support
Using Predict With CREATE SYNONYM
The difference depends only on the Predict existence on the selected platform.

Example How to Use the Predict File With CREATE SYNONYM

1. When the Predict file exists. Use CREATE SYNONYM with name SAMPLE for file 2 from
Database 1. The required file number for the Predict dictionary is 12, and the name of
the view from the Predict dictionary is VEHICLES:

CREATE SYNONYM SAMPLE
FOR FILE=2/12(VEHICLES)
DBMS ADBSINX
DATABASE 1/1
END

2. With the Predict file and same file name. Use CREATE SYNONYM with name SAMPLE
for file 2 from Database 1. The required file number for the Predict dictionary is 11, and
the name of the view from the Predict dictionary is the same as the Master and Access
Files:

CREATE SYNONYM SAMPLE
FOR FILE=2/11
DBMS ADBSINX
DATABASE 1/1
END
3-16 iWay Software

Getting Started in ADABAS
3. Without the Predict file.

CREATE SYNONYM SAMPLE
FOR FILE=2
DBMS ADBSINX
DATABASE 1
END

• Only one ADABAS file description can be generated in the Master File. If multiple
ADABAS files must be described in one Master File, then a file must be created for each
of them, and those must be combined manually in one Master File.

• The CREATE SYNONYM command describes ADABAS files within the constraints of the
ADABAS interface. Superdescriptors, sub descriptors, periodic elements (PE groups),
and multi-value fields (MU) are included. Comments are used to describe unsupported
fields in the generated Master File.

• The CREATE SYNONYM command allows you to customize the output using data from
the Predict dictionary:

1. Replace generic field names that were constructed based on the ADABAS field
names (xx_FIELD) with the names obtained from the Predict dictionary.

2. Replace USAGE format and length generated from the ADABAS FDT with the
format and length from the Predict dictionary.

3. Include the NATURAL column heading stored in the Predict dictionary in the
Master File for use as the default column heading in server reports.
iWay Data Adapter Administration for MVS and VM 3-17

GFBID Support
3-18 iWay Software

CHAPTER 4

4.Getting Started in CA-DATACOM/DB

Topics:

• DATACOM Operating Environment

• DATACOM Mapping Concepts

• DATACOM Structures

• Describing DATACOM Data Sources

• Describing Multi-File Structures

• Sample DATACOM
DATADICTIONARY Master and
Access Files

• DATACOM Access Control

• User Requirements Table (URT) in
DATACOM

• Creating File Descriptions With
AUTO DATACOM

These topics discuss CA-DATACOM/DB and server concepts,
and how CA-DATACOM/DB elements correspond to their
server counterparts.

Note: Throughout this manual, CA-DATACOM/DB is
referred to as DATACOM.
iWay Data Adapter Administration for MVS and VM 4-1

DATACOM Operating Environment
DATACOM Operating Environment
The CA-DATACOM/DB Data Adapter operates in the MVS environments and issues standard
DATACOM calls for record retrieval.

The data adapter uses DATACOM’s Boolean Selection capabilities, which enable it to
retrieve only records that satisfy a request. This reduces the number of I/Os involved in data
retrieval.

DATACOM Mapping Concepts
DATACOM is a relational or flat file database management system. The DATACOM
DATADICTIONARY stores and manages descriptive data about a data source.

To access DATACOM data sources, describe them to the server, using server terminology
and attributes. The descriptions are kept in a Master File and an associated Access File.

You can describe several different DATACOM data sources in a pair of Master and Access
Files. You can then access the pair with one request.

The Master File is a member of an MVS Partitioned Data Set (PDS). This PDS is allocated to
ddname MASTER.

//MASTER DD DSN=filename1

The Access File is a member of an MVS Partitioned Data Set (PDS). This PDS is allocated to
ddname ACCESS.

//ACCESS DD DSN=filename2

The Master File tells the server how to interpret the DATACOM data structure. It identifies
the DATACOM:

• Elements

• Fields (for each of those elements)

• Field type and field length (as the server will use them)

• Field type and field length (as DATACOM stores them)

The Access File creates a bridge between the server and DATACOM. It translates server
terminology into DATACOM syntax by identifying the appropriate DATACOM:

• Database IDs

• Logical files

• Native key fields

• Element security information
4-2 iWay Software

Getting Started in CA-DATACOM/DB
When the server receives a request:

• The server looks for the Master File describing that data source. The file name in the
request is the same as the MVS or VM member name in the Master File PDS.

• The server finds the suffix DATACOM in the Master File. This tells the server the
requested data is in a DATACOM data source.

• The server loads the DATACOM Data Adapter module. The data adapter module then
opens the Access File, in which it finds the DATACOM User Requirements Table (URT)
name, the database ID(s), and file name(s).

• The DATACOM Data Adapter opens the URT and builds calls to DATACOM. The data
adapter retrieves the data and passes it to the server. The server then creates the
answer set.

DATACOM Structures
A DATACOM structure is a collection of one or more logical data sources, identified by a
unique 3-byte ID number. Each logical data source contains data records with a defined set
of fields, elements, and keys, and is identified by a unique, alphanumeric 3-byte table name.

A data record consists of one or more elements. An element is the smallest logical unit of
data a program can request; it has a unique 5-byte name. Elements consist of one or more
contiguous fields and may have an associated security code. Because a field may belong to
more than one element, the elements themselves may overlap.

DATACOM locates records through keys. Each data source may have up to 999 keys (not
necessarily contiguous) consisting of 1-180 fields, which total a length of 180 bytes. Each
key is identified by a 5-byte name and a 3-byte numeric ID. The use of keys in DATACOM’s
Compound Boolean Selection Facility is transparent to the user.
iWay Data Adapter Administration for MVS and VM 4-3

DATACOM Structures
The diagram below is the structure of the sample PERSON data source. It contains two keys,
three elements with fields that overlap, and seven unique fields.

Note: The DATACOM DATADICTIONARY listing of the PERSON data source does not identify
the specific fields in each element. For this information, refer to the DATADICTIONARY
ELEMENT FIELD REPORT

• The Employee Record Element (EMDTA) contains all seven fields in the data source.

• The Employee Address Element (ADEMP) contains six fields that represent the
employee ID and address. These are:

NUMBER
NAME
STREET_ADDRESS
CITY_ADDRESS
STATE_ADDRESS
ZIP_CODE_LOC

• The Employee Identification Element (IDEMP) contains the NUMBER and NAME fields.
All fields within each element are contiguous.

EMPLOYEE
NUMBER

EMPLOYEE
NAME

STREET
ADDRESS

CITY
ADDRESS

STATE
ADDRESS

ZIP
CODE

SOCIAL
SECURITY
NUMBER

ELEMENT #1

 ELEMENT
#2
IDEMP

ELEMENT
#3
ADEMP

 ELEMENT
#4
EMDTA
4-4 iWay Software

Getting Started in CA-DATACOM/DB
Mapping DATACOM Structures in the Server

When you describe a DATACOM data source in a Master File:

• You can choose one or more elements from a DATACOM data source to build a single
segment. You do not have to specify all the elements in a particular data source.

• You must define each field in the element in the order in which it appears in the
DATACOM data source. A DATACOM field becomes a Master File attribute.

• You can define two or more DATACOM elements that contain overlapping fields.
However, you must define each overlapping field to the server with a unique name,
each time it appears in an element.

• Each DATACOM field you define to the server must have the 5-byte element name to
which the DATACOM field belongs, together with a unique qualifier.

• For each DATACOM field, the DATACOM field length becomes the ACTUAL field length.

• The number of decimal positions that DATACOM indicates becomes the number of
decimal positions in the USAGE format.

DATACOM Master File Definition Master File Attributes

File
Element
Field
Field Length (LNGTH)

SEGMENT
ALIAS for groups of fields
FIELD
ACTUAL (DATACOM format)
USAGE (server format)
iWay Data Adapter Administration for MVS and VM 4-5

DATACOM Structures
The following represents the DATADICTIONARY Element Field Report for the Employee
Record Element (EMDTA) from the PERSON data source:

ENTITY-TYPE:ELEMENT NAME:PERSONNEL.EMPLOYEE (001)PROD DESC:EMPLOYEE RE
AUTHOR:JOHN DOE CONTROLLER:HR DESIGNER COPY-VERSION:

FILE-NAME: PERSON-MASTER DBNAME: PMF ID: 002 DESC: PERSONNEL MASTER
FILE

LV C FIELD-NAME..PAREN-NAME.DISPL LNGTH T J S DEC RPFAC
DESCRIPTION....VALUE
 ALC-NAME COMPILER-NAME......LANGUAGE-COMMENT

01 S NUMBER 0 5 N R N 00001 EMPLOYEE NUMBER
 EMNUMBER EM-IDENTIFICATION-NUMBER
01 S NAME 5 24 C L N 00001 EMPLOYEE NAME
 EMNAME EM-IDENTIFICATION-NAME
01 S STREET-ADDRESS 29 24 C L N 00001 EMPLOYEE STREET ADDRESS
 EMADDR EM-STREET-ADDRESS
01 S CITY-ADDRESS 53 15 C L N 00001 EMPLOYEE CITY
 EMCITY EM-CITY-ADDRESS
01 S STATE-ADDRESS 68 2 C L N 00001 EMPLOYEE STATE CODE
 EMSTATE EM-STATE-ADDRESS
01 S ZIP-CODE-LOC 70 5 C L N 00001 EMPLOYEE ZIP CODE
 EMZIP EM-ZIP-CODE-LOC
01 S SOCIAL-SECURITY 75 5 D R Y 00001 EMPLOYEE SOCIAL SECURITY
 EMSSN EM-SOCIAL-SECURITY-NUMBER

The following table explains the relevant column headings in the report:

Column Heading Definition

LV COBOL copybook level corresponding to the field.

C Field class:

S = Simple
C = Compound
V = Value
F = Filler

FIELD-NAME DATACOM field name.

PAREN-NAME The PARENT field to which the field belongs if the field class is C
or V, or if this is a redefined field.

DISPL Byte displacement of the field in the data source.

LNGTH Field length in bytes.
4-6 iWay Software

Getting Started in CA-DATACOM/DB
The following examples show the completed Master File and Access File that describe the
Employee Record Element from the DATACOM PERSON data source.

Master File

FILENAME=PERSON,SUFFIX=DATACOM
 SEGNAME=PERSON ,SEGTYPE=S,$
 FIELD=EMP_NO ,ALIAS=EMDTA.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=NAME ,ALIAS=EMDTA.NAME ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=STREET ,ALIAS=EMDTA.STR ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=CITY ,ALIAS=EMDTA.CITY ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=STATE ,ALIAS=EMDTA.STAT ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=ZIP ,ALIAS=EMDTA.ZIP ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELD=SSNO ,ALIAS=EMDTA.SSNO ,USAGE=P9L ,ACTUAL=P5 ,$

Access File

TRACE=NO,USERTABLE=URTLOAD,$
SEGNAME=PERSON,DBID=143,TABLENAME=PMF,KEYNAME=EMPNO,$

T Field type:

B = Binary
C = Character
D = Packed decimal
H = 2-character hexadecimal field
N = Zoned decimal
T = PL/1 bit representation

J Justification:

L = Left
R = Right

S Signed field:

Y = Yes
N = No

DEC Number of decimal places for a numeric field.

RPFAC Number of times the field can repeat.

DESCRIPTION Description of the field.

VALUE Value of a COBOL copybook VALUE CLAUSE when the Field
Class is V.

Column Heading Definition
iWay Data Adapter Administration for MVS and VM 4-7

DATACOM Structures
How the Data Adapter Creates DATACOM Call Syntax
There are two types of DATACOM record retrieval commands generated by the DATACOM
Data Adapter:

• Sequential Retrieval Commands: GSETL and GETIT.

Issued by the data adapter only for the root of the accessed subtree, and only if the
request did not specify any record selection criteria on that segment.

• Compound Boolean Selection Commands: SELFR and SELNR.

Issued for DATACOM records when there are available selection criteria.

GSETL and GETIT in DATACOM
When the data adapter determines sequential retrieval needs to be done for the root
segment, it issues a GSETL command. It uses the KEYNAME (specified in the Access File),
and establishes the starting position at the beginning (lowest value) of the key. Only one
command is issued per request.

GETIT commands follow the GSETL command. They retrieve the element(s) for each root
record indexed by the key. The data adapter requests only the elements necessary to satisfy
the request. If there are no sort fields in the request, the answer set is produced, in
ascending order, by the key. GETIT commands are issued repeatedly until DATACOM issues
a return code of 19 (End of Table).

As long as the KEYNAME in the Access File is the Native Key, the data adapter retrieves all
records that correspond to a DATACOM table.

SELFR and SELNR in DATACOM
The data adapter uses the following types of selection criteria to construct the SELFR call to
DATACOM for a record:

• All the values supplied in WHERE statements, which mention a field in the segment and
have any of these types of operators:

EQ
IS
GE
GT
LE
LT
NE
CONTAINS
FROM...TO

Note: The SELFR request does not use selection on defined fields.
4-8 iWay Software

Getting Started in CA-DATACOM/DB
• DBA value selection criteria on the segment.

The data adapter generates a SELFR command, using all available selection criteria on the
segment. This builds a list of records that match the selection criteria and returns the first
record. The list is built in the temporary index area of the DATACOM data source.

For a descendant record with SEGTYPE=U, the SELFR retrieves the unique descendant. No
SELNR command is issued. Otherwise, the SELFR command is followed by SELNR
command(s), which retrieve the records listed in the temporary index. A SELNR is issued
repeatedly until DATACOM issues a return code of 14 (End/Beginning of Set).

To illustrate the sequence of calls the data adapter must make to DATACOM to service a
multi-segment request, use the PERSPAY data source.

FILENAME=PERSPAY,SUFFIX=DATACOM
 SEGNAME=PERSON,SEGTYPE=S,$
 FIELD=EMP_NO ,ALIAS=EMDTA.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=NAME ,ALIAS=EMDTA.NAME ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=STREET ,ALIAS=EMDTA.STR ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=CITY ,ALIAS=EMDTA.CITY ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=STATE ,ALIAS=EMDTA.STAT ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=ZIP ,ALIAS=EMDTA.ZIP ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELD=SSNO ,ALIAS=EMDTA.SSNO ,USAGE=P9L ,ACTUAL=P5 ,$
 SEGNAME=PAYROLL,SEGTYPE=S,PARENT=PERSON,$
 FIELD=ENUM ,ALIAS=PYIDT.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=ACTCODE ,ALIAS=PYIDT.ACODE ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=ACTSTATUS,ALIAS=PYIDT.ASTATU,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=CURRATE ,ALIAS=FIGSS.CRATE ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDWAGES ,ALIAS=FIGSS.YWAGES,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDCOMM ,ALIAS=FIGSS.YCOMM ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDTAXES ,ALIAS=FIGSS.YTAXES,USAGE=P10.2,ACTUAL=Z8 ,$

In the request:

SELECT NAME EMP_NO SSNO YTDWAGES YTDCOMM YTDTAXES
FROM PERSPAY
WHERE ACTSTATUS = 'A'

PERSON is a referenced segment; it is the root of the accessed subtree. NAME, EMP_NO, and
SSNO are the names of fields in this segment.

However, there are no available selection criteria for the PERSON segment (ACTSTATUS is a
field in the PAY segment). Therefore, the data adapter will first issue a GSETL command for
the PAYROLL Master File (PMF), using the EMP_NO Native Key. The GSETL command is
followed by a GETIT command to retrieve the first root record, the EMDTA element.

Since the server always processes from top-to-bottom and left-to-right, all the related
descendants of this first root record must be retrieved before proceeding to the next root
record.
iWay Data Adapter Administration for MVS and VM 4-9

Describing DATACOM Data Sources
Next, to generate the SELFR call to retrieve PAY data source records related to the PERSON
parent, two pieces of selection criteria will be used: the value of EMP_NO (the KEYFLD) from
the PMF record, and the selection criteria on ACTSTATUS.

The first SELFR call to DATACOM for the first root record will retrieve a PAY record with
ENUM equal to EMP_NO, and ACTSTATUS equal to 'A'. Subsequent SELNR calls (SEGTYPE=S)
may retrieve other records with those same values.

After DATACOM returns a 14 for the PAY data source, a second GETIT command will be
generated for a PMF record. The value of this record’s EMP_NO field is used, with
ACTSTATUS EQ A, to generate a new set of SELFR/SELNR calls to retrieve related PAY records.

This process will be repeated until DATACOM returns a 19 for the GETIT command on the
root, signifying that all records have been retrieved and processed. If the request were:

SELECT NAME EMP_NO SSNO YTDWAGES YTDCOMM YTDTAXES
FROM PERSPAY
WHERE ACTSTATUS = 'A'
WHERE STATE = 'CT' OR 'RI' OR 'MA' OR 'VT' OR 'NH' OR 'ME'

SELFR/SELNR commands would be issued, instead of GSETL/GETIT commands with the five
STATE values. (STATE is a field on the PERSON segment.) The process, however, would be the
same.

Finally, keep in mind that:

• The data adapter retrieves all descendant records of one parent occurrence before it
will retrieve the next parent record.

• The higher you put your selection criteria in the hierarchical structure, the more
efficient processing will be.

Describing DATACOM Data Sources
The following topics describe the DATACOM data sources:

• Master Files

• Access Files

• Describing multi-file structures

• Creating virtual fields

• Sample DATACOM DATADICTIONARY Master and Access Files

Note: These topics apply only to a Full-Function Server. They do not apply to a server
configured as a Relational Gateway.
4-10 iWay Software

Getting Started in CA-DATACOM/DB
DATACOM Master Files
The following topics describe the three types of Master File declarations:

Each declaration must begin on a separate line. A declaration consists of attribute-value
pairs separated by commas. A declaration can span as many lines as necessary, as long as
no single keyword-value pair spans two lines.

Do not use system or reserved words as names for files, segments, fields, or aliases.
Specifying a reserved word generates syntax errors.

DATACOM File Attributes
Each Master File begins with a file declaration. The file declaration has two attributes:

FILENAME (FILE)

Identifies the Master File.

SUFFIX

Identifies the data adapter needed to interpret the request.

Syntax How to Identify Master Files for DATACOM

FILE[NAME]=file, SUFFIX=DATACOM [,$]

where:

file

Is the file name for the Master File. The file name can consist of a maximum of eight
alphanumeric characters. The file name should start with a letter and be representative
of the table or view contents.

DATACOM

Is the value for the CA-DATACOM/DB Data Adapter.

Declaration
Type

Description

File Names the file and describes the type of data source.

Segment Identifies a table, file, view, or segment.

Field Describes the columns of the table or view.
iWay Data Adapter Administration for MVS and VM 4-11

Describing DATACOM Data Sources
DATACOM Segment Attributes
Each table described in a Master File requires a segment declaration. The segment
declaration consists of at least two attributes:

SEGNAME

Identifies one table.

SEGTYPE

Identifies the type of segment sequencing.

Syntax How to Declare a DATACOM Segment

SEGNAME=segname, SEGTYPE=type [,$]

where:

segname

Is the segment name that serves as a link to the actual DATACOM table name. It can
consist of a maximum of 8 alphanumeric characters. It may be the same as the name
chosen for FILENAME, the actual table name, or an arbitrary name.

The SEGNAME value in the Master File must be identical to the SEGNAME value
specified in the Access File.

type

Indicates the type of segment sequencing:

S indicates the segments are logically sequenced in low to high order.

U indicates a unique segment.
4-12 iWay Software

Getting Started in CA-DATACOM/DB
DATACOM Field Attributes
Each row in a table may consist of one or more columns. These columns are described in
the Master File as fields with the following primary field attributes:

FIELDNAME

Identifies the name of a field.

ALIAS

Identifies the DATACOM 5-byte element short name to which the field belongs, along
with a unique qualifier.

USAGE

Identifies how to display a field on reports.

ACTUAL

Identifies the data type and length in bytes for a field.

You can get values for these attributes from the DATACOM DATADICTIONARY Element
Field Report.

Syntax How to Declare a DATACOM Field

FIELD[NAME]=fieldname, ALIAS=elementname.qualifier,
[USAGE=]display_format, [ACTUAL=]storage_format ,$

where:

fieldname

Is the unqualified name of the field. You must describe the fields in the order in which
they appear in the DATACOM element. You can find the DATACOM field names, their
relative position within the element, and the DATACOM formats in the
DATADICTIONARY Element Field Report. This value must be unique within the Master
File. The name can consist of a maximum of 48 alphanumeric characters (including any
file name and segment name qualifiers and qualification characters you may later
prefix to them in your requests). The name must begin with a letter. Special characters
and embedded blanks are not recommended.

Note that some elements contain overlapping fields. You must define overlapping
fields for those elements in which they appear, and assign a unique field name each
time.

It is not necessary to describe all the columns of the DATACOM table in your Master File.

elementname

Is the DATACOM 5-byte element short name, followed by a period to which the field
belongs. You can find the name in the DATACOM DATADICTIONARY listing of Master
Files.
iWay Data Adapter Administration for MVS and VM 4-13

Describing DATACOM Data Sources
qualifier

Is the qualifier that is separated from the element name by a period. The qualifier is
used to make the ALIAS unique and provide the field with an alternate identification.
The total length of the ALIAS, including the element name and qualifier, cannot exceed
12 characters.

display_format

Is the display format. The value must include the field type and length and may contain
edit options.

The data type of the display format must be identical to that of the ACTUAL format. For
example, a field with an alphanumeric USAGE data type must have an alphanumeric
ACTUAL data type.

Fields or columns with decimal or floating-point data types must be described with the
correct scale (s) and precision (p). Scale is the number of positions to the right of the
decimal point. Precision is the total length of the field.

For the server, the total display length of the field or column includes the decimal point
and negative sign. In SQL, the total length of the field or column excludes positions for
the decimal point and negative sign.

For example, a column defined as DECIMAL(5,2) would have a USAGE attribute of P7.2
to allow for the decimal point and a possible negative sign.

storage_format

Is the storage format of the DATACOM data type and length, in bytes, for the field. You
can find this under LNGTH in the field report. For more information on data type
support, see the iWay SQL Reference manual.

DATACOM Access Files
Each Master File must have a corresponding Access File. The file name of the Access File
must be the same as that used for the Master File.

The Access File serves as a link between the server and DATACOM. It stores such
information as the URT name, DATACOM database ID(s), DATACOM table name(s),
keyname(s), and element security information. In addition, the Access File provides the
TRACE parameter, a useful debugging tool.

The Access File contains three types of logical records: header, segment, and element. Each
consists of a list of keyword and value pairs, separated by commas and terminated by a
comma and dollar sign (,$). The list is freeform and may span several lines; keywords may be
in any order.
4-14 iWay Software

Getting Started in CA-DATACOM/DB
DATACOM Header Logical Record
The header record contains the TRACE and USERTABLE attributes.

Syntax How to Implement a DATACOM Header Logical Record

TRACE={YES|NO}, USERTABLE=name,$

where:

YES

Indicates a complete trace of executed DATACOM commands. We recommend that you
use TRACE only for debugging purposes.

NO

Indicates no trace. This value is the default.

name

Is the name of the load module that supplies the DATACOM User Requirements Table
(URT) information to be dynamically loaded. The URT must contain all the database IDs
and files specified in the Master File, or you will not have access to the records.

DATACOM Segment Logical Record
In a segment logical record, KEYNAME does not have to be the native key. If you wish to use
a different keyname, that is acceptable. However, be aware that you may not get all the
records.

Syntax How to Implement a DATACOM Segment Logical Record

SEGNAME=segname, DBID=dbid, TABLENAME=tablename,
[KEYFLD=keyfld, IXFLD=ixfld,] KEYNAME=keyname,$

where:

segname

Identifies the segment name. The Master File SEGMENT attribute is the same as the
SEGNAME attribute in the Access File.

dbid

Identifies the numeric, 3-byte DATACOM database ID.

tablename

Identifies the 3-byte DATACOM table name to which the segment identified by
SEGNAME corresponds. You can find this name in the DATADICTIONARY Element Field
Report, under DBNAME.
iWay Data Adapter Administration for MVS and VM 4-15

Describing DATACOM Data Sources
keyfld

Is the field name from the parent segment of a cross-reference; it is mandatory for
everything but the root segment. You may also specify multiple field names,
concatenated with the symbol / (without blanks). The keyword value must be
contiguous, and on the same line. The key list can span multiple lines.

ixfld

Is the field name in the cross-referenced segment that establishes the cross-reference.
It is mandatory for all but the root segment. The value(s) of these field(s) must have
USAGE and ACTUAL formats comparable to the KEYFLD.

You may also specify multiple field names, concatenated with the symbol / (without
blanks). The keyword value may not span more than one line. The key list can span
multiple lines.

keyname

Is the native key. This is in the DATADICTIONARY Indented Report. In that report, MN
stands for mandatory native.

DATACOM Element Logical Record Security
You must specify an element logical record if an element is defined to DATACOM with a
security code.

Syntax How to Specify an Element Logical Record

ELEMENT=element, SECURITY=security,$

where:

element

Is the five-byte name of the element.

security

Is the two-position hexadecimal value of the DATACOM 1-byte security code.
4-16 iWay Software

Getting Started in CA-DATACOM/DB
Describing Multi-File Structures
You can describe many different DATACOM data sources in one Master File and Access File
pair. However, in the data adapter, there must be at least one field in common between any
parent/descendant pair of data sources. Each set of related fields must also have
comparable USAGE and ACTUAL formats.

Each time you add a descendant segment, you must specify the PARENT attribute in the
segment record. This identifies hierarchical relationships between the data sources.

In addition, you must specify the relationship between the fields in the Access File with the
KEYFLD and IXFLD attributes:

• The value of the KEYFLD can be a simple field, a DEFINE field, or a list of fields.

• The value of IXFLD can be a simple field, or a list of fields.

• The length and format of KEYFLD and IXFLD must be the same.

There are advantages to defining multiple data sources in a single structure:

• The multi-file structure creates a view of the DATACOM data source.

• You can describe up to 64 separate, but related, DATACOM logical files as segments in a
single Master File. This will allow you to issue a request from any or all of the 64
segments defined in a single Master File without issuing a JOIN command.

To illustrate this concept, we will use the DATACOM data sources PERSON and PAYROLL.

The PAYROLL data source contains information about the wages, commissions, and taxes
for each person in the PERSON data source, displayed below:

Master File

FILENAME=PAYROLL,SUFFIX=DATACOM
 SEGNAME=PAYROLL,SEGTYPE=S,$
 FIELD=ENUM ,ALIAS=PYIDT.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=ACTCODE ,ALIAS=PYIDT.ACODE ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=ACTSTATUS,ALIAS=PYIDT.ASTATU,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=CURRATE ,ALIAS=FIGSS.CRATE ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDWAGES ,ALIAS=FIGSS.YWAGES,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDCOMM ,ALIAS=FIGSS.YCOMM ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDTAXES ,ALIAS=FIGSS.YTAXES,USAGE=P10.2,ACTUAL=Z8 ,$

Access File

TRACE=NO,USERTABLE=URTLOAD,$
SEGNAME=PAYROLL,DBID=143,TABLENAME=PAY,KEYNAME=EMPNO,$
iWay Data Adapter Administration for MVS and VM 4-17

Describing Multi-File Structures
Multi-File DATACOM Master File
Consider an application that contains both the PERSON and PAYROLL data sources. It is
reasonable to generate reports that identify the current salary rate for all employees or a list
of all the employees who have a particular salary rate.

For demonstration purposes, we define both these DATACOM logical files in one Master
File. In all but the top (or root) segment, you must specify the PARENT attribute. PARENT
establishes the relationship between two segments.

Syntax How to Establish the Relationship Between Two Segments

PARENT=segname

where:

segname

Is the name of the child segment’s parent. If you do not specify a PARENT attribute, it
will default to the child segment’s immediate predecessor as the parent.

The new multi-file Master File with the PARENT attribute added to the descendent segment
is displayed below. The file name PERSPAY identifies the entire Master File.

FILENAME=PERSPAY,SUFFIX=DATACOM
 SEGNAME=PERSON,SEGTYPE=S,$
 FIELD=EMP_NO ,ALIAS=EMDTA.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=NAME ,ALIAS=EMDTA.NAME ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=STREET ,ALIAS=EMDTA.STR ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=CITY ,ALIAS=EMDTA.CITY ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=STATE ,ALIAS=EMDTA.STAT ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=ZIP ,ALIAS=EMDTA.ZIP ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELD=SSNO ,ALIAS=EMDTA.SSNO ,USAGE=P9L ,ACTUAL=P5 ,$
 SEGNAME=PAYROLL,SEGTYPE=S,PARENT=PERSON,$
 FIELD=ENUM ,ALIAS=PYIDT.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=ACTCODE ,ALIAS=PYIDT.ACODE ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=ACTSTATUS,ALIAS=PYIDT.ASTATU,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=CURRATE ,ALIAS=FIGSS.CRATE ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDWAGES ,ALIAS=FIGSS.YWAGES,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDCOMM ,ALIAS=FIGSS.YCOMM ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDTAXES ,ALIAS=FIGSS.YTAXES,USAGE=P10.2,ACTUAL=Z8 ,$
4-18 iWay Software

Getting Started in CA-DATACOM/DB
Multi-File DATACOM Access File
The Access File for a multi-file structure must have a segment record for each logical
segment you define in the Master File.

Each segment record other than the root must contain the KEYFLD and IXFLD attributes, in
addition to the Access File attributes described earlier. These new attributes identify the
field(s) in an embedded cross-reference. The common field(s) serve as the cross-referenced
link between the two data sources.

The PAYROLL data source is the child, or cross-referenced, segment in our example. This is
important because you identify cross-referenced fields by specifying KEYFLD and IXFLD in
the cross-referenced segment record.

KEYFLD

The field name in the parent or host segment, or a list of up to five fields
separated by a / .

IXFLD

The field name in the child or cross-referenced segment, or a list of up to five fields
separated by a / .

In the example, the field EMP_NO in the PERSON data source is related to the field ENUM in
the PAYROLL data source. Both have the same USAGE and ACTUAL data format and length
(P6 and Z5); this is a server requirement.

Add the segment record for the PAYROLL data source to the Access File, including the
KEYFLD and IXFLD attributes, shown below:

TRACE=NO,USERTABLE=URTLOAD,$
SEGNAME=PERSON,DBID=143,TABLENAME=PMF,KEYNAME=EMPNO,$
SEGNAME=PAYROLL,DBID=143,TABLENAME=PAY,KEYNAME=EMPNO,
KEYFLD=EMP_NO,IXFLD=ENUM,$
iWay Data Adapter Administration for MVS and VM 4-19

Describing Multi-File Structures
Using Multiple Fields to Cross-Reference Data Sources in DATACOM
With the DATACOM Data Adapter, you can use up to five fields to establish a relationship or
cross-reference between data sources.

For example, matching permutations of values of Z/Y/X/W/V in the KEYFLD and IXFLD
attributes can be used to create new cross-referenced fields in the Access File. This is
sometimes referred to as using concatenated keys.

To illustrate how to use concatenated keys, we alter the PERSPAY multi-file Master and
Access Files, as shown below:

1. Replace the field EMP_NO in the PERSON segment with the LAST_NAME and
FIRST_NAME fields.

2. In the PAYROLL segment, replace the field ENUM with LN and FN.

3. Separate each field that is part of the cross-reference with a / .

FILENAME=PERPAY,SUFFIX=DATACOM
 SEGNAME=PERSON,SEGTYPE=S,$
 FIELD=LAST_NAME ,ALIAS=EMDTA.LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME,ALIAS=EMDTA.FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=NAME ,ALIAS=EMDTA.NAME ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=STREET ,ALIAS=EMDTA.STR ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=CITY ,ALIAS=EMDTA.CITY ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=STATE ,ALIAS=EMDTA.STAT ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=ZIP ,ALIAS=EMDTA.ZIP ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELD=SSNO ,ALIAS=EMDTA.SSNO ,USAGE=P9L ,ACTUAL=P5 ,$
 SEGNAME=PAYROLL,SEGTYPE=S,PARENT=PERSON,$
 FIELD=LN ,ALIAS=PYIDT.LNAME ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FN ,ALIAS=PYIDT.FNAME ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=ACTCODE ,ALIAS=PYIDT.ACODE ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=ACTSTATUS ,ALIAS=PYIDT.ASTATU,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=CURRATE ,ALIAS=FIGSS.CRATE ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDWAGES ,ALIAS=FIGSS.YWAGES,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDCOMM ,ALIAS=FIGSS.YCOMM ,USAGE=P10.2,ACTUAL=Z8 ,$
 FIELD=YTDTAXES ,ALIAS=FIGSS.YTAXES,USAGE=P10.2,ACTUAL=Z8 ,$

These multiple fields will now become the KEYFLD and IXFLD attributes in the Access File.

Separate each field from the next with the symbol /, and add these attributes to the
PAYROLL segment record in the Access File:

TRACE=NO,USERTABLE=URTLOAD,$
SEGNAME=PERSON,DBID=143,TABLENAME=PMF,KEYNAME=LNAME,$
SEGNAME=PAYROLL,DBID=143,TABLENAME=PAY,KEYNAME=LNAME,
KEYFLD=LAST_NAME/FIRST_NAME,IXFLD=LN/FN,$
4-20 iWay Software

Getting Started in CA-DATACOM/DB
Sample DATACOM DATADICTIONARY Master and Access Files
The following are Master Files, Access Files, and examples of DATACOM logical files, fields,
and elements from the DATACOM DATADICTIONARY database listing.

DATACOM DATADICTIONARY PERSON-MASTER Indented Report
AREA PEOPLE 001 P PERSONNEL AREA PMF
FILE PERSON-MASTER 001 P PERSONNEL MASTER FILE PMF 02
RECORD PERSONNEL 001 P PERSONNEL RECORD
KEY PERSONNEL.NUMBER 001 P EMPLOYEE NUMBER KEY EMPNO 001 MN
KEY PERSONNEL.STATE-ZIP 001 P EMPLOYEE STATE ZIP KEY STZIP 002
ELEMENT PERSONNEL.EMPLOYEE 001 P EMPLOYEE RECORD ELEMENT EMDTA
ELEMENT PERSONNEL.FULL ADDRESS 001 P EMPLOYEE ADDRESS ELEMEN ADEMP
ELEMENT PERSONNEL.IDENTIFICATION 001 P EMPLOYEE IDENTIFICATION IDEMP
FIELD PERSONNEL.CITY-ADDRESS 001 P EMPLOYEE CITY
FIELD PERSONNEL.NAME 001 P EMPLOYEE NAME
FIELD PERSONNEL.NUMBER 001 P EMPLOYEE NUMBER
FIELD PERSONNEL.SOCIAL-SECURITY 001 P EMPLOYEE SOCIAL SECURITY NUMBER
FIELD PERSONNEL.STREET-ADDRESS 001 P EMPLOYEE STREET ADDRESS
FIELD PERSONNEL.ZIP-CODE-LOC 001 P EMPLOYEE ZIP CODE

DATADICTIONARY Element Field Report for EMDTA
ENTITY-TYPE:ELEMENT NAME:PERSONNEL.EMPLOYEE (001)PROD DESC:EMPLOYEE RE
AUTHOR:JOHN DOE CONTROLLER:HR DESIGNER COPY-VERSION:

FILE-NAME: PERSON-MASTER DBNAME: PMF ID: 002 DESC: PERSONNEL MASTER FILE

LV C FIELD-NAME..PAREN-NAME.DISPL LNGTH T J S DEC RPFAC DESCRIPTION.......VALUE
 ALC-NAME COMPILER-NAME......LANGUAGE-COMMENT

01 S NUMBER 0 5 N R N 00001 EMPLOYEE NUMBER
 EMNUMBER EM-IDENTIFICATION-NUMBER
01 S NAME 5 24 C L N 00001 EMPLOYEE NAME
 EMNAME EM-IDENTIFICATION-NAME
01 S STREET-ADDRESS 29 24 C L N 00001 EMPLOYEE STREET ADDRESS
 EMADDR EM-STREET-ADDRESS
01 S CITY-ADDRESS 53 15 C L N 00001 EMPLOYEE CITY
 EMCITY EM-CITY-ADDRESS
01 S STATE-ADDRESS 68 2 C L N 00001 EMPLOYEE STATE CODE
 EMSTATE EM-STATE-ADDRESS
01 S ZIP-CODE-LOC 70 5 C L N 00001 EMPLOYEE ZIP CODE
 EMZIP EM-ZIP-CODE-LOC
01 S SOCIAL-SECURITY 75 5 D R Y 00001 EMPLOYEE SOCIAL SECURITY
 EMSSN EM-SOCIAL-SECURITY-NUMBER
iWay Data Adapter Administration for MVS and VM 4-21

Sample DATACOM DATADICTIONARY Master and Access Files
PERSON Master File and Access File in DATACOM
Master File

FILENAME=PERSON,SUFFIX=DATACOM
 SEGNAME=PERSON,SEGTYPE=S,$
 FIELD=EMP_NO ,ALIAS=EMDTA.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=NAME ,ALIAS=EMDTA.NAME ,USAGE=A24 ,ACTUAL=A24 ,$
 FIELD=STREET ,ALIAS=EMDTA.STR ,USAGE=A24 ,ACTUAL=A24 ,$
 FIELD=CITY ,ALIAS=EMDTA.CITY ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=STATE ,ALIAS=EMDTA.STAT ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=ZIP ,ALIAS=EMDTA.ZIP ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELD=SSNO ,ALIAS=EMDTA.SSNO ,USAGE=P9L ,ACTUAL=P5 ,$

Access File

TRACE=NO,USERTABLE=URTLOAD,$
SEGNAME=PERSON,DBID=143,TABLENAME=PMF,KEYNAME=EMPNO,$

DATACOM DATADICTIONARY PAYROLL-MASTER Indented Report
AREA PEOPLE 001 P PAYROLL AREA PAY
FILE PAYROLL-MASTER 001 P PAYROLL MASTER FILE PAY 001
RECORD PAYROLL 001 P PAYROLL RECORD
KEY PAYROLL.NUMBER 001 P EMPLOYEE NUMBER KEY EMPNO 001 MN
ELEMENT PAYROLL.ACTIVITY-CODE 001 P EMPLOYEE NUMBER ELEMENT PYIDT
ELEMENT PAYROLL.FIGURES 001 P EMPLOYEE PAY FIGURES FIGSS
ELEMENT PAYROLL.RECORD 001 P EMPLOYEE PAYROLL RECORD PAYRC
FIELD PAYROLL.ACTIVITY-CODE 001 P EMPLOYEE CODE
FIELD PAYROLL.ACTIVITY-STATUS 001 P EMPLOYEE PAY STATUS
FIELD PAYROLL.CURRENT-RATE 001 P EMPLOYEE RATE
FIELD PAYROLL.NUMBER 001 P EMPLOYEE NUMBER
FIELD PAYROLL.YTD-COMMISSION 001 P EMPLOYEE COMMISSION
FIELD PAYROLL.YTD-TAX 001 P EMPLOYEE YEAR T DATE TAXES
FIELD PAYROLL.YTD-WAGES 001 P EMPLOYEE YTD WAGES
4-22 iWay Software

Getting Started in CA-DATACOM/DB
DATADICTIONARY Element Field Report for PAYROLL
ENTITY-TYPE:ELEMENT NAME:PAYROLL.RECORD (001)PROD DESC:EMPLOYEE PAYROLL RECORD
ELEMEN

FILE-NAME: PAYROLL-MASTER DBNAME: PAY ID: 001 DESC: PAYROLL MASTER FILE

LV C FIELD-NAME..PARENT-NAME.DISPL LNGTH T J S DEC RPFAC DESCRIPTION...VALUE
 ALC-NAME COMPILER-NAME......LANGUAGE-COMMENT

01 S NUMBER 0 5 N R N 00001 EMPLOYEE NUMBER
 RCNUM RC-NUMBER
01 S ACTIVITY-CODE 5 1 C L N 00001 EMPLOYEE CODE
 RCCODE RC-ACTIVITY-CODE
01 S ACTIVITY-STATUS 6 1 C L N 00001 EMPLOYEE PAY STATUS
 RCSTATUS RC-ACTIVITY-STATUS
01 S CURRENT-RATE 7 8 N R N 00001 EMPLOYEE RATE
 RCRATE RC-CURRENT-RATE
01 S YTD-WAGES 15 8 N R N 00001 EMPLOYEE YTD WAGES
 RCWAGES RC-YTD-WAGE
01 S YTD-COMMISSION 23 8 N R N 00001 EMPLOYEE COMMISSION
 RCCOMM RC-YTD-COMMISSION
01 S YTD-TAX 31 8 N R N 00001 EMPLOYEE YEAR T DATE TAXES
 RCTAX RC-YTD-TAX

PAYROLL Master File and Access File in DATACOM
Master File

FILENAME=PAYROLL,SUFFIX=DATACOM
 SEGNAME=PAYROLL,SEGTYPE=S,$
 FIELD=ENUM ,ALIAS=PYIDT.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=ACTCODE ,ALIAS=PYIDT.ACODE ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=ACTSTATUS ,ALIAS=PYIDT.ASTATU ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=CURRATE ,ALIAS=FIGSS.CRATE ,USAGE=P10.2 ,ACTUAL=Z8 ,$
 FIELD=YTDWAGES ,ALIAS=FIGSS.YWAGES ,USAGE=P10.2 ,ACTUAL=Z8 ,$
 FIELD=YTDCOMM ,ALIAS=FIGSS.YCOMM ,USAGE=P10.2 ,ACTUAL=Z8 ,$
 FIELD=YTDTAXES ,ALIAS=FIGSS.YTAXES ,USAGE=P10.2 ,ACTUAL=Z8 ,$

Access File

TRACE=NO,USERTABLE=URTLOAD,$
SEGNAME=PAYROLL,DBID=143,TABLENAME=PAY,KEYNAME=EMPNO,$
iWay Data Adapter Administration for MVS and VM 4-23

DATACOM Access Control
PERSPAY Master File and Access File in DATACOM
Master File

FILENAME=PERSPAY,SUFFIX=DATACOM
 SEGNAME=PERSON,SEGTYPE=S,$
 FIELD=EMP_NO ,ALIAS=EMDTA.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=NAME ,ALIAS=EMDTA.NAME ,USAGE=A24 ,ACTUAL=A24 ,$
 FIELD=STREET ,ALIAS=EMDTA.STR ,USAGE=A24 ,ACTUAL=A24 ,$
 FIELD=CITY ,ALIAS=EMDTA.CITY ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=STATE ,ALIAS=EMDTA.STAT ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=ZIP ,ALIAS=EMDTA.ZIP ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELD=SSNO ,ALIAS=EMDTA.SSNO ,USAGE=P9L ,ACTUAL=P5 ,$
 SEGNAME=PAYROLL ,SEGTYPE=S,PARENT=PERSON,$
 FIELD=ENUM ,ALIAS=PYIDT.EN ,USAGE=P6 ,ACTUAL=Z5 ,$
 FIELD=ACTCODE ,ALIAS=PYIDT.ACODE ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=ACTSTATUS ,ALIAS=PYIDT.ASTATU ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELD=CURRATE ,ALIAS=FIGSS.CRATE ,USAGE=P10.2 ,ACTUAL=Z8 ,$
 FIELD=YTDWAGES ,ALIAS=FIGSS.YWAGES ,USAGE=P10.2 ,ACTUAL=Z8 ,$
 FIELD=YTDCOMM ,ALIAS=FIGSS.YCOMM ,USAGE=P10.2 ,ACTUAL=Z8 ,$
 FIELD=YTDTAXES ,ALIAS=FIGSS.YTAXES ,USAGE=P10.2 ,ACTUAL=Z8 ,$

Access File

TRACE=NO,USERTABLE=URTLOAD,$
SEGNAME=PERSON,DBID=143,TABLENAME=PMF,KEYNAME=EMPNO,$
SEGNAME=PAYROLL,DBID=143,TABLENAME=PAY,KEYNAME=EMPNO,
KEYFLD=EMP_NO,IXFLD=ENUM,$

DATACOM Access Control
The following topics describe the DATACOM access control files.

• User Requirements Table (URT)

• DATACOM element-level security

In any computer system, it is important that data be secured from unauthorized access.
Both DATACOM and the server provide security mechanisms to ensure that users have
access to only those objects for which they have authorization.

User Requirements Table (URT) in DATACOM
First-level access to DATACOM data sources and fields is controlled by the DATACOM User
Requirements Table (URT). DATACOM uses the URT to provide file and database-level
security, and password protection for element-level security.

The URT used for your server structure must include all the DATACOM database IDs
contained in the Access File. At run time, the data adapter dynamically loads the URT’s load
module.
4-24 iWay Software

Getting Started in CA-DATACOM/DB
DATACOM Element-Level Security
The DATACOM Data Adapter supports element-level security by allowing specification of
DATACOM passwords in the Access File. If an element is defined in the DATACOM control file
with a security code, you must specify the two-character hex value of the code in the Access
File.

Creating File Descriptions With AUTO DATACOM
The AUTO DATACOM facility creates Master and Access Files for your CA-DATACOM/DB data
using information stored in the CA-DATACOM/DB Data Dictionary.

Syntax How to Create Files With the AUTO DATACOM Facility

To start AUTO DATACOM, run the CLIST

qualif.EDACTL.DATA(EDAAUTO)

where:

qualif

Is the high-level qualifier of your SQL data sets.

Choose Datacom from the menu that appears.

Note: Access Files are stored as members of a PDS allocated to the ddname EDAAFD. Prior
to running the clist, you must add this allocation to qualif.EDACTL.DATA(EDAAUTO)

A sample allocation follows:

"ALLOC F(EDAAFD) DA('qualif.EDAAFD.DATA') SHR REUSE"

Instructions: Place cursor on the type of File Description you wish
to translate and then press ENTER. Use PF3 to Quit.

 DB2

 IDMS

 ADABAS

 DATACOM

 INFOMAN

 Cobol FD

 NOMAD
iWay Data Adapter Administration for MVS and VM 4-25

Creating File Descriptions With AUTO DATACOM
The following input screen appears

where:

Auto Datacom Automatic Master and Access Facility
 Main Menu

 Datacom Names
 (Enter URT and Information for A, B, C or D)

 User Requirements Table (URT) :
 Data Table Use Master Key?:
NO
 A. TBLNAM/DBID : /
 B. TBLNAM/DB Occurrence : /
 C. Table Occurrence :
 D. Dataview Occurrence :

 Master and Access File Names

Member : Replace Member?:
NO
 Master PDS: qualif.EDAMFD.DATA
 Access PDS: qualif.EDAAFD.DATA

PF1-Help ENTER-Create Member PF3-Exit
Auto Datacom PF5-Edit Master Member PF6-Edit
Access Member PF9-Draw Master Member

User
Requirements Table
(URT)

Is the name of the User Requirements Table that will be used
in the Access member. It can be from 1 to 8 characters in
length.

TBLNAM/DBID Is the 3-character table name to be described in the Master
and Access Files. DBID is the database ID in which the table
resides. If a TBLNAM is supplied, DBID must also be supplied.

TBLNAM/DB
Occurrence

Is the 3-character table name to be described in the Master
and Access Files. DB occurrence is the 1- to 32-character name
of the database occurrence in which the table resides. If a
value is supplied for TBLNAM, you must also supply a value for
DB occurrence.
4-26 iWay Software

Getting Started in CA-DATACOM/DB
Table Occurrence Is the name of the table to be described in the Master and
Access Files. If a value is supplied for table occurrence, that
value overrides TBLNAM/DBID and TBLNAM/DB. The value can
be from 1 to 32 characters in length.

Dataview
Occurrence

Is the name of the CA-DATACOM/DB dataview that contains all
or a subset of table elements to be described in the Master
and Access Files. Dataview occurrence overrides all previous
CA-DATACOM/DB table specifications. The value can be from 1
to 32 characters in length.

Member Is the name you select for referring to the data in requests.
This name can be from 1 to 8 characters in length, and must
refer to a member of a PDS.

Master PDS Is the fully-qualified data set name of the PDS in which the
Master Files created by AUTO DATACOM will be stored. You do
not need to surround the data set name with quotation marks.
The default is qualif.EDAMFD.DATA. The data set name can be
up to 44 characters in length. If the PDS you specify does not
exist, you will be prompted to create it.

Access PDS Is the fully-qualified data set name of the Master in which the
Access Files created by AUTO DATACOM will be stored. You do
not need to surround the data set name with quotation marks.
The default is qualif.EDAAFD.DATA. The data set name can be
up to 44 characters in length. If the PDS you specify does not
exist, you will be prompted to create it.

Replace Member? Allows you to specify whether or not you want to overwrite
existing Master and Access Files. NO or N is the default.
iWay Data Adapter Administration for MVS and VM 4-27

Creating File Descriptions With AUTO DATACOM
4-28 iWay Software

CHAPTER 5

5.Getting Started in CA-IDMS

Topics:

• CA-IDMS Operating Environments

• CA-IDMS Mapping Concepts

• CA-IDMS Set-Based Relationships

• Summary of Network Relationships
in CA-IDMS

• Logical Record Facility Concepts in
CA-IDMS

• Describing CA-IDMS Data Sources

• CA-IDMS Master Files

• CA-IDMS Access Files

• Overriding DBNAME and
DICTNAME in IDMS

• CA-IDMS Sample File Descriptions

• CA-IDMS Access Control

These topics discuss CA-IDMS and server concepts, and
how CA-IDMS elements correspond to their server
counterparts.

Note: For the remainder of these topics, IDMS means CA-
IDMS.
iWay Data Adapter Administration for MVS and VM 5-1

CA-IDMS Operating Environments
 CA-IDMS Operating Environments
The CA-IDMS Data Adapter operates under MVS in two modes:

• Local

• Central Version

Refer to the iWay Server Installation manual for installation instructions.

CA-IDMS Mapping Concepts
These topics explain how CA-IDMS databases—both network and LRF-based—correspond
to hierarchical and relational data sources. You should become familiar with these topics,
because most of the concepts affect the way IDMS files are described to the server.

IDMS is a network database management system that is accessed by a subschema (the
equivalent in the server is a Master File). IDMS provides two methods of retrieving records
within a subschema from an application program:

• DML (network access)

• LRF (LRF-based access)

DML access is the traditional method of IDMS database navigation. It is the network
navigation facility. Each physical record is retrieved separately. An application program
enters the IDMS database at a particular IDMS record type (the equivalent in the server is a
segment) and searches the set connections to retrieve the required data. See CA-IDMS
Network Concepts on page 3 for mapping concepts that apply to network record types.

LRF access, available as of IDMS Release 5.7, is the relational-like method of access. The
Logical Record Facility (LRF) provides software to dynamically create flat records from one
or more network record types at run time. See Logical Record Facility Concepts in CA-IDMS
on page 15 for mapping concepts that apply to LRF-based records.
5-2 iWay Software

Getting Started in CA-IDMS
CA-IDMS Network Concepts
An IDMS record type is described to the server as a segment. Since DML retrieval is record-
oriented—not field-oriented—the Master File must list the fields in the same order as they
appear on the IDMS record type. However, a Master File does not have to list every field of a
particular record type; you may omit fields after a given field. For instance, your description
may list the first four fields of a 10-field IDMS record type. You can use IDMS field names in
your Master File up to a maximum of 48 characters. (See Describing CA-IDMS Data Sources
on page 18 for dummy fields that can be substituted for omitted fields.)

The following graphic illustrates how a record type is described as a segment. The record
type DEPARTMENT contains the field-type DEPT-ID. Its corresponding server segment DEPT
contains a field named DEPT_ID.

Repeating fields on an IDMS record type are defined as OCCURS segments. For more
information on the OCCURS parameter, see Describing CA-IDMS Data Sources on page 5-18.

Network record types may be related to each other. These relationships may be physical
(using set connections) or logical (achieved through an index or CALC field). The IDMS Data
Adapter supports both physical and logical relationships.

CA-IDMS Set-Based Relationships
In an IDMS database, physical relationships between record types are achieved with
pointers that correspond to IDMS sets. A set implements a one-to-many relationship
between record types. The server equivalent of a set is the parent/descendant relationship
between segments. In an IDMS set, one record type acts as the owner (the one side of the
relationship) and one or more record types act as the members (the many side of the
relationship). A single IDMS record type can participate in several set relationships as either
the owner or the member.

DEPARTMENT

410 F 56 CALC

DEPT-ID

ORG-DEMO-REGION

DEPT_ID

IDMS SQL

S

DEPT

DN
iWay Data Adapter Administration for MVS and VM 5-3

CA-IDMS Set-Based Relationships
The IDMS representation of record types and set relationships within a database is called a
Bachman diagram, also known as a data structure diagram. In a Bachman diagram, a record
type is depicted as a box; a set, as a line with an arrow. Set names appear as labels beside
the arrows. The box that the arrow points to is the member record type. Triangles indicate
indexes. The next graphic is the Bachman diagram for the IDMS network subschema
EMPSS01. Sections of this diagram are referenced throughout these topics. For further
information, see Describing CA-IDMS Data Sources on page 5-18 for its corresponding
Master File EMPFULL.

The following kinds of set-based relationships are depicted: simple set, common owner,
common member, multi-member, bill-of-materials (simple and multi-tier), and loop
structures. All correspond to server structures and are explained following the diagram:

OFFICE

EMP-NAME NOX
N OA
ASC EMPLNAME DLREPORTS-TO

NPO MA NEXT

MANAGES
NPO OM NEXT EMP-COVERAGE

NPO MA FIRST

SCHEMA NAME EMPSCHM
SUBSCHEMA: EMPS S01

COVERAGE-CLAIMS
NP MA LAST

450 F 76 CALC

OFFICE CODE DN

ORG-DEMO-REGION

EMPLOYEE

415 F 116 CALC

EMP-ID DN

EMP-DEMO-REGION

COVERAGE

400 F 16 VIA

EMP-COVERAGE

INS-DEMO-REGION

NON-HOSP-CLAIM

445 V 1008 VIA

COVERAGE-CLAIMS DN

INS-DEMO-REGION

DEPARTMENT

410 F 56 CALC

DEPT-ID DN

ORG-DEMO-REGION

STRUCTURE

460 F 8 VIA

MANAGES

EMP-DEMO-REGION

HOSPITAL-CLAIM

430 F 292 VIA

COVERAGE-CLAIMS DN

INS-DEMO-REGION

EMPFNAME

DEPT-EMPLOYEE
NPO OA NEXT

OFFICE-EMPLOYEE
NPO OA NEXT
5-4 iWay Software

Getting Started in CA-IDMS
EMP-EMPOSITION
NOP MA FIRST

EMP-EXPERTISE
NPO MA
DESC SKILL-LEVEL DF

SKIL-EXPERTISE
NPO MA
DES SKILL-LEVEL DF

SKILL-TITLE-NDX
N OA
ASC TITLE DN

SKILL-NAME-NDX
N OA
ASC SKILL-NAME DN

JOB-EMPOSITION
NPO OM NEXT

INSURANCE-PLAN

435 F 132 CALC

INS-PLAN-CODE DN

INS-DEMO-REGION

DENTAL-CLAIM

405 V 930 VIA

COVERAGE-CLAIMS DN

INS-DEMO-REGION

SKILL

455 F 76 CALC

SKILL-ID DN

ORG-DEMO-REGION

EXPERTISE

425 F 8 VIA

EMP-EXPERTISE DN

EMP-DEMO-REGION

EMPOSITION

420 F 28 VIA

EMP-POSITION DN

EMP-DEMO-REGION

JOB

440 F 296 CALC

JOB-ID DN

ORG-DEMO-REGION
iWay Data Adapter Administration for MVS and VM 5-5

CA-IDMS Set-Based Relationships
Simple Set in CA-IDMS
The graphic below illustrates the basic mapping principle of a simple set: an IDMS record
type corresponds to a segment; a set relationship corresponds to a parent/descendant
relationship.

This figure also illustrates a second principle: an IDMS structure can have more than one
representation as a hierarchy. The type of parent/descendant relationship required in the
Master File depends on whether the owner or the member record type is designated as the
parent segment.

The JOB-EMPOSITION set has two possible representations:

1. Shows the JOB record type, the owner in the set, mapped to the server as the root
segment. Since a member record type is multiply-occurring (for example, several
instances of EMPOSITION records per JOB instance, indicating that many positions
share one job title and description), the EMPOSITION record type is displayed as a non-
unique descendant.

2. Depicts the reverse. The EMPOSITION record type is the root segment and JOB is the
unique descendant, since an EMPOSITION instance can have only one owner (only one
job title and description per position).
5-6 iWay Software

Getting Started in CA-IDMS
Common Owner in CA-IDMS
Given the rules in the previous example, consider a more complex scenario called a
common owner. A common owner structure contains a record type that is the owner of two
or more record types. Several representations are possible.

For instance, the graphic below depicts three ways to describe the EMPLOYEE, EXPERTISE,
and EMPOSITION structure in one Master File:

1. Shows the EMPLOYEE record type, the owner in both sets, mapped to the server as the
root segment of EMPOSITION and EXPERTISE. Since an EMPLOYEE record can have
many EMPOSITION and EXPERTISE records, both descendant records are non-unique.

2. Depicts the EMPOSITION record type as the root segment of EMPLOYEE, which acts as
the parent of EXPERTISE. Since an EMPOSITION record can have only one owner,
EMPLOYEE is a unique descendant; EXPERTISE is a non-unique descendant of
EMPLOYEE.

3. Depicts the EXPERTISE record type as the parent of EMPLOYEE, which acts as the parent
of EMPOSITION. EMPLOYEE is a unique descendant and EMPOSITION is a non-unique
descendant of EMPLOYEE.

EMPLOYEE

EMPOSITION

EMPLOYEE

EXPERTISE

EMPLOYEE

EMPOSITION

IDMS

(2) (3)

S

S

U

EMPOSITION

(1)

EXPERTISEEXPERTISE S

EXPERTISE

EMPLOYEE

EMPOSITION S

U

iWay Data Adapter Administration for MVS and VM 5-7

CA-IDMS Set-Based Relationships
Common Member in CA-IDMS
When an IDMS record type is a member of two or more sets, the association of the owner
record type as the parent segment must be abandoned for one or more sets, because a
segment can have only one parent. The graphic below displays the possible interpretations
for this IDMS configuration.

In the graphic, the EMPLOYEE record type is a common member in the DEPT-EMPLOYEE
and the OFFICE-EMPLOYEE sets. This structure can be described to the server in three ways:

1. Shows DEPARTMENT as the root segment with EMPLOYEE as its non-unique
descendant; OFFICE is the unique descendant of EMPLOYEE.

2. Depicts the reverse: OFFICE is the root segment; EMPLOYEE is its non-unique
descendant; DEPARTMENT is the unique descendant of EMPLOYEE.

3. Shows the only other alternative: EMPLOYEE is the parent of OFFICE and DEPARTMENT.
Both are unique, since an EMPLOYEE can belong to only one OFFICE and DEPARTMENT.

Notice that the rules for simple sets are still valid:

• If the owner record type is the parent segment, the member record type as a
descendant segment is non-unique.

• If the member record type is the parent segment, the owner record type as a
descendant segment is unique.

• A member or an owner record type may act as a root segment. (The server ignores
whether the root segment is unique or non-unique.)

DEPARTMENT

OFFICE

EMPLOYEE

DEPARTMENT

DEPARTMENT

EMPLOYEE

EMPLOYEE

OFFICE DEPARTMENT

IDMS

(2) (3)

S

U

U U
S

OFFICE

(1)
OFFICE

EMPLOYEE
U

5-8 iWay Software

Getting Started in CA-IDMS
It may be helpful to think of the hierarchical depiction of a network structure as its
navigational path. From an IDMS standpoint, panel 1 of the above graphic shows that the
IDMS database can be entered at the DEPARTMENT record type. The corresponding
EMPLOYEE record occurrences for a DEPARTMENT record occurrence can be obtained by
searching the DEPT-EMPLOYEE set. For each EMPLOYEE record occurrence, obtaining the
owner in the OFFICE-EMPLOYEE set retrieves the corresponding OFFICE record occurrence.
This is a three-segment retrieval hierarchy that maps to server descriptions.

Multi-Member in CA-IDMS
When there is more than one member record type, the set is called a multi-member set. A
multi-member set is represented in the Master File exactly like a common owner set. The
fact that the two relationships are based on the same set is stated in the Access File.

For example, to describe the COVERAGE record type and its three members of the
COVERAGE-CLAIMS set, you may choose one of four ways as depicted in the following
graphic:

1. Shows the COVERAGE record type, owner of the multi-member set, as the root
segment. Since several instances of CLAIMS can be reported against one insurance
policy (COVERAGE), each member is a non-unique descendant.

2. Depicts HOSPITAL-CLAIM as the parent of COVERAGE, and the other two member
record types as descendants of COVERAGE. In each case, a claim can be reported
against only one insurance policy. This explanation applies to panels 3 and 4 as well.

COVERAGE

HOSP NON_HOSP DENTAL

NON_HOSP

COVERAGE

HOSP DENTAL

HOSP

COVERAGE

NON_HOSP DENTAL

DENTAL

COVERAGE

NON_HOSP HOSP

(1) (2)

(3) (4)

S S S S S

U

S S S S

U U
iWay Data Adapter Administration for MVS and VM 5-9

CA-IDMS Set-Based Relationships
Bill-of-Materials in CA-IDMS
Bill-of-materials structures are classified as simple or multi-tier. In this topic, the simple
version is discussed first.

Two record types linked by more than one set is called a bill-of-materials structure. This
structure describes a many-to-many relationship between record occurrences of the same
record type. The member record type is the junction record type between the two related
owners.

For a simple bill-of-materials structure, the server requires that the owner record type be
represented as two or more segments with different field names for the identical fields. This
ensures that, at retrieval time, the field names specified in the user’s request will provide the
proper navigational path.

In the following graphic, the EMPLOYEE and STRUCTURE record types are connected by two
sets. This simple bill-of-materials structure can be described two ways:

1. Shows the relationship as employee-to-manager. The EMPLOYEE record type is the
parent segment of the non-unique STRUCTURE segment using the REPORTS-TO set.
The STRUCTURE record type, in turn, is the parent segment of the unique MANAGER
segment using the MANAGES set. (The MANAGER segment duplicates the EMPLOYEE
segment and its fields are renamed.)

2. Shows the relationship as employee-to-subordinate. The EMPLOYEE record type is the
parent segment of the non-unique STRUCTURE segment using the MANAGES set. The
STRUCTURE record type is the parent segment of the unique SUBORD segment using
the REPORTS-TO set. (The SUBORD segment duplicates the EMPLOYEE segment and its
fields are renamed.)

EMPLOYEE EMPLOYEE EMPLOYEE

STRUCTURE STRUCTURE STRUCTURE

MANAGER SUBORD

S

U

S

U

(1) (2)IDMS
5-10 iWay Software

Getting Started in CA-IDMS
The previous graphic represents a two-tier employee-to-employee relationship. Multi-tier
relationships are extended bill-of-materials structures. Multi-tier relationships are created
and used for different levels of answer sets. The number of levels or tiers should be kept to a
minimum.

To determine the number of segments required to describe an n-tier relationship, use this
formula:

Number of segments = (2 x number of tiers) - 1

The following graphic is a three-tier version of the previous graphic:

1. Combines both views with EMPLOYEE as the parent of two non-unique descendants,
S1 and S2. Both S1 and S2, in turn, are parents of a unique descendant, MGT and SUB,
respectively. (S1 and S2 describe junction records that point to MGT and SUB.)

2. Shows a three-tier relationship between employees implemented in a five-segment
single-path hierarchy. The segments UPRMGT (upper management), 1STLNMGT (first-
line management), and NON_MGT (non-management) all describe the EMPLOYEE
segment but have renamed fields. (Like S1 and S2 above, STRUCT1 and STRUCT2
contain renamed fields that point to descendant segments.)

3. Depicts the opposite of panel 2.

EMPLOYEE UPRMGT NON_MGT

S1 S2

MGT SUB

STRUCT1

1STLNMGT

STRUCT2

NON_MGT

STRUCT2

1STLNMGT

STRUCT1

UPRMGT

S

U

S

U

S

U

S

U

S

U

S

U

(1) (2) (3)
iWay Data Adapter Administration for MVS and VM 5-11

CA-IDMS Set-Based Relationships
Loop Structures in CA-IDMS
Loop structures in IDMS implement complicated relationships among record types. For the
server depiction of a loop, you must select a record type to be the parent in the
relationship.

Suppose you had a loop structure like the one below. An INVOICE record occurrence has an
owner record occurrence (INVENTORY-ITEMS) only if the invoice order is pending or has not
been delivered. The INVO-LOCATION set lists the location where an invoice item will be or
was delivered.

In the following graphic, panel 1, the server translates this structure as a multi-tier structure
with one tier of renamed segments. The INVENTORY-ITEMS record type, in this case, acts as
the root INVENTORY. The LOCATION record type is mapped as the CURRLOC segment that
lists the location of items currently in stock. The INVOICE record type is mapped as the
PENDINVO segment that lists pending invoice orders. Segments ORGINVO and FUTRELOC
are required segments that rename the data in record types INVOICE and LOCATION. The
segment ORGINVO contains historical information for an inventory item. The segment
FUTRELOC indicates where an ordered item will be delivered.

INV-LOCATION

INVENTORY
-ITEMS LOCATION

INVOICE
INVO-LOCATION

INV-INVOICE

INVENTORY

CURRLOC PENDINVO

ORGINVO FUTRELOC

IDMS (1)

S

U

S

S

5-12 iWay Software

Getting Started in CA-IDMS
CALC-Based and Index-Based Relationships in CA-IDMS
Logical relationships, unlike physical ones, are based on the occurrence of the same data
value in two different record types. To make the parent/descendant connection, the
CA-IDMS Data Adapter uses CALC fields or indices to locate the related record
occurrence(s). The related fields are not required to have the same name in both record
types, but the field format must be the same. See Describing CA-IDMS Data Sources on page
18 for COBOL/server format conversions.

Note: WHEREs on CALC fields and indices are also used to generate CALC and index calls to
IDMS. This topic is discussed in detail in CA-IDMS Access Files on page 5-32. CALC or index
fields can also be GROUPNAMEs, consisting of fields contiguous in both parent and
descendant segments. The format types and lengths of the GROUP and its fields must be
comparable in both parent and descendant segments.

Like set-based descendants, CALC- and index-based descendants are unique or non-
unique, but this depends largely on how the DUPLICATES parameter is specified in the
Access File. (The SEGTYPE parameter for the descendant must also reflect the DUPLICATES
parameter; for example, CLCDUP=N, SEGTYPE=U.) The server treats unique descendants in
the same manner regardless of what underlies the parent/descendant relationship: set,
index, or CALC field.

The COVERAGE and INSURANCE-PLAN record types in the graphic in the CA-IDMS Set-Based
Relationships section on page 3 illustrate a logical relationship. The field PLAN-CODE is
common to both record types. The parent/descendant relationship can be described to the
server if:

• The INSURANCE-PLAN record type has an index on PLAN-CODE.

• The INSURANCE-PLAN record type is an IDMS CALC record type with PLAN-CODE as the
CALC key.
iWay Data Adapter Administration for MVS and VM 5-13

Summary of Network Relationships in CA-IDMS
The graphic below depicts the server representation of the graphic in the section
CA-IDMS Set-Based Relationships on page 3 that uses the CALC field method. The server
interprets COVERAGE as the parent segment and INSURANCE-PLAN as the descendant.
Since the DUPLICATES parameter is set to N (CLCDUP=N), the INSURANCE segment is
unique.

Summary of Network Relationships in CA-IDMS
As illustrated in the previous examples, there are four ways to implement a network
relationship. Each can be described as a parent/descendant relationship:

• Owner/member

• Member/owner

• Field or GROUP/CALC field

• Field, GROUP/SPF, or Integrated Index

All four can be intermixed in one Master File. The actual underlying connection (set, CALC,
index) between parent and descendant is not apparent to end users who specify field
names. In addition, a Master File can list record types from multiple subschemas, databases,
and dictionaries.

In server processing, the identity of the record type behind a segment is invisible. The
retrieval technique is followed in all cases as if all segments were represented by distinct
records. Within IDMS, currencies are maintained by storing the DBKEYs of record types and
retrieving the record occurrence again, when needed.

The top-to-bottom order in which segments are defined—the chains of parent/descendant
relationships—corresponds to structural relationships among the IDMS record types. This
top-to-bottom order is logically significant; the left-to-right order, on the other hand, is not.

COVERAGE

INSURANCE U
5-14 iWay Software

Getting Started in CA-IDMS
Logical Record Facility Concepts in CA-IDMS
The CA-IDMS Data Adapter supports two kinds of LRF-based records:

• Logical Records (LR) are built from network record types. They are not physically stored
as such; instead, they are defined within a subschema using DBA-supplied navigational
paths. Logical Records are created at execution time from real database records-types
based on DBA-supplied navigational paths and the SELECTs passed to LRF from the
server.

• Automatic System Facility (ASF) records are created by end users with the Automatic
System Facility, a menu-driven front end to LRF. This Facility generates subschemas and
navigational paths based on the user’s menu selection.

The CA-IDMS Data Adapter uses the IDMS Logical Record Facility (LRF) to retrieve and
create ASF and LR records. In general, the LRF-based records can contain information from
several sources—both DML-created and ASF-generated—that are located in several
database areas. All fields, records, and areas, however, must be defined to the same
subschema.

LRF-based records may be related to each other using an embedded cross-reference. Your
Master File can list up to 64 related LRF-based records. Access Files can list an unlimited
number of subschemas. However, the server accesses up to 16 subschemas per request.
iWay Data Adapter Administration for MVS and VM 5-15

Logical Record Facility Concepts in CA-IDMS
LRF Records as Descendants in CA-IDMS
With the CA-IDMS Data Adapter, you may create a parent/descendant relationship between
two LRF records if they share a common field or GROUP. Its field length and format must be
the same in both segments. The shared fields are specified in the descendant segment
declaration of the Access File as the values of the KEYFLD/IXFLD pair (see Describing CA-
IDMS Data Sources on page 5-18 for Access File parameters).

For example, in the graphic below, the LRF record DEPT-EMP-POS is represented as the root
segment DEPTEMPO; the LRF record JOB-EMPOSITION, as the unique segment JOBPOS. The
related fields are POS_STRT_DR2 (the IXFLD value) and POS_STRT_DT1 (the KEYFLD value).
See Describing CA-IDMS Data Sources on page 5-18 for the Master and Access Files for this
example.

The restriction that the shared field in the descendant record be a CALC or an indexed field
does not apply to LRF records. However, this kind of embedded cross-reference has one
restriction: The IDMS path group for an LRF record that acts as the descendant segment
must contain a SELECT clause to process the implied WHERE clauses.

DEPT-EMP-POS JOB EMPOSITION DEPTEMPO

JOBPOS

(1)

U

5-16 iWay Software

Getting Started in CA-IDMS
Syntax How to Implement a Parent/Descendent Relationship with SELECT

SELECT clauses are maintained by your DBA and should already be available in your
subschema. The following SELECT clauses can successfully implement a parent/descendant
relationship. They are listed in descending order of efficiency

1. SELECT FOR FIELDNAME EQ fieldname

2. SELECT USING INDEX indexname

3. SELECT FOR FIELDNAME fieldname

4. SELECT FOR ELEMENT elementname

5. SELECT

where:

fieldname

Is the joined-to IDMS field name on the descendant record type.

indexname

Is the index setname of the joined-to field.

elementname

Is the physical record type on which the joined-to field is stored.

Note:

• If no specific SELECT clause exists, a null SELECT clause (item 5) must be available to
process an answer set.

• LRF records that return partial record occurrences and user-defined path status should
not be used. If the data adapter encounters a user-defined path status, the status is
interpreted as LR-ERROR and the retrieval process is halted with error messages
EDA967 and EDA949.

• Do not confuse the use of the word SELECT with the SQL SELECT statement. In the
above example, the word SELECT is used to refer to the IDMS internal meaning.

See Describing CA-IDMS Data Sources on page 5-18 for examples of SELECT clauses as they
appear in LRF-based subschemas.
iWay Data Adapter Administration for MVS and VM 5-17

Describing CA-IDMS Data Sources
Describing CA-IDMS Data Sources
The following topics describe CA-IDMS data sources:

• Master Files

• Creating virtual fields

• Access Files

• Creating file descriptions with AUTOIDMS

• Sample file descriptions

These topics explain the rules for making an IDMS data source accessible to the server.

The description of the IDMS database is contained in a pair of simple sequential files: a
Master File, and an associated Access File. The Master File contains keywords in comma-
delimited format that define the field names for IDMS fields and segment relationships. The
Access File is an extension of Master File syntax that provides information to map DML
record types and LRF-based records, including record and area names and, where needed,
set or field name information.

These topics concentrate on the Master and Access Files and their components. They
contain brief examples of syntax.

CA-IDMS Master Files
A Master File consists of file, segment, and field declarations. Rules for declarations are:

• Each declaration must begin on a separate line and be terminated by a comma and
dollar sign (,$). Text appearing after the comma and dollar sign is treated as a comment.

• A declaration can span as many lines as necessary as long as no attribute=value pair is
separated. Commas separate attribute=value pairs.

The following topics summarize the syntax for each type of declaration and then describe
each attribute.
5-18 iWay Software

Getting Started in CA-IDMS
CA-IDMS File Attributes
Each Master File begins with a file declaration that names the file and describes the type of
data source—an IDMS data source in this case. The file declaration has two attributes,
FILENAME and SUFFIX.

Syntax How to Identify a Master File for CA-IDMS

FILE[NAME]=name, SUFFIX=IDMSR [,$]

where:

name

Is any 1- to 8-character name. In MVS, the Master File is the member name within the
PDS allocated to ddname MASTER.

IDMSR

Indicates that the CA-IDMS Data Adapter is required for data retrieval.

CA-IDMS Segment Attributes
Each IDMS segment described in a Master File requires a segment declaration that consists
of at least two attributes, SEGNAME and SEGTYPE.

SEGNAME in CA-IDMS
The SEGNAME value assigned to DML record types and LRF records are suggestive names—
not necessarily the IDMS record names. The segment name may be a maximum of eight
characters and must be unique within a given Master File. If the same IDMS record type is
viewed in two different contexts (for example, a loop structure), two segment declarations
are required.

SEGTYPE in CA-IDMS
The SEGTYPE keyword indicates whether a segment occurs once (SEGTYPE=U) or many
times (SEGTYPE=S). It is used as follows:

• For a root segment, SEGTYPE has no meaning and may be omitted entirely.

• For a descendant segment, SEGTYPE values can be S or U.

• For descendant segments with set-based relationships, SEGTYPE indicates whether the
segment acts as an owner or a member. If the descendant segment is the owner record
type, the SEGTYPE value is U. If the descendant is the member, the SEGTYPE value is S.

• For descendant segments with CALC-based or index-based relationships, SEGTYPE
values may be S or U depending on the DUPLICATES (CLCDUP or IXDUP) value.

• For descendant segments with LRF-based relationships, SEGTYPE values may be S or U.
iWay Data Adapter Administration for MVS and VM 5-19

CA-IDMS Master Files
PARENT in CA-IDMS
The PARENT keyword is required for descendant segment declarations. The PARENT value
names the descendant’s parent segment. This keyword is not specified for the root
declaration.

CRFILE (Cross-referenced File) in CA-IDMS
The CRFILE keyword is specified only for segments that are described remotely in another
Master File. The field descriptions for these segments are, in effect, copied into the Master
File at execution time. Remote descriptions are discussed in CA-IDMS Remote Descriptions
on page 5-26.

OCCURS and POSITION in CA-IDMS
The OCCURS and POSITION attributes are specified only when the segment corresponds to
an intra-record structure, such as a COBOL OCCURS or OCCURS DEPENDING clause. These
keywords are described in detail in Defining Intra-Record Structures With the OCCURS
Segment on page 5-27.

CA-IDMS Field Attributes
Each segment consists of one or more fields. The Master File need not describe all fields
from a segment.

To describe a field in the Master File, you must specify the primary attributes FIELDNAME,
ALIAS, USAGE, and ACTUAL. These attributes are discussed in this topic. Note that the data
adapter does not support the MISSING attribute.
5-20 iWay Software

Getting Started in CA-IDMS
Syntax How to Describe a Field in the Master File

FIELD[NAME]=field,[ALIAS=]alias,[USAGE=]display,[ACTUAL=]format ,$

where:

field

Is a 1- to 48-character field name.

alias

The ALIAS keyword is used for certain fields which require specific ALIAS values.

display

Is the display format for the field.

format

Is the definition of the IDMS field format and length (n).

You can omit the ALIAS, USAGE, and ACTUAL keywords from the field declaration if the
values are specified in the standard order (FIELD, ALIAS, USAGE, ACTUAL). For example, the
following declarations are equivalent:

FIELD = YEAR, ALIAS=, USAGE=A2, ACTUAL=A2,$
FIELD = YEAR, ,A2, A2,$

FIELDNAME in CA-IDMS
The FIELDNAME keyword may contain any name—not necessarily an IDMS field name. It
can be a maximum of 48 characters. The name that you assign must be unique, because, in
the server, data is referenced through the field names. If the same IDMS record type viewed
in different contexts underlies two or more segments, different field names must be
specified in separate segment descriptions.

Due to the record-oriented nature of IDMS, the fields are described for each segment in the
same order as they display in the subschema record area. Bytes skipped for field alignment
or for fields you want to omit must be described as dummy fields of the appropriate length.

For example, a 1-byte alphanumeric field is followed by a double-precision floating point
field:

SEGNAME=EMPSTATUS,$
 FIELD=STATUS_CODE,SCODE ,A1,A1,$
 FIELD= , ,A7,A7,$
 FIELD=GROSS_SALES,GSALES,D12.2,D8,$

The same name can be used for all dummy fields; in the example above, blanks are used.
iWay Data Adapter Administration for MVS and VM 5-21

CA-IDMS Master Files
You do not need to describe all fields of the record type or LRF record—only an initial set,
starting with the first field and continuing up to the last field of interest. For variable-length
record types, treat the fixed-length portion as one segment and the variable portion as
another segment, as described with the OCCURS attribute. See Defining Intra-Record
Structures With the OCCURS Segment on page 5-27 for information about OCCURS
segments.

ALIAS in CA-IDMS
The ALIAS keyword is used for certain fields which require specific ALIAS values:

• Database key fields—the ALIAS value is DBKEY.

• ORDER fields—the ALIAS value is ORDER.

• Fields on LRF-based records (LR or ASF) that correspond to the last fields of their
underlying physical record types. Filler fields may be required if the last field does not
end on a double-word boundary. The ALIAS for each filler field is a unique name with a
maximum of eight characters counting the .END suffix. The data adapter uses this suffix
to correctly address LRF records for LRF calls.

• GROUP fields—an ALIAS is always required or an error message results.

The following is an example of a filler field in a segment that describes an LRF record.
Suppose a record called JOB-EMPOSITION is defined to the IDMS subschema with seven
fields: the first three fields are derived from a physical (DML) record type called JOB; the last
four fields, from the EMPOSITION physical record type. The Master File syntax for this LRF
record looks like this:

FILENAME=JOBMAST, SUFFIX=IDMSR,$
 SEGNAME=JOBEMP, SEGTYPE=S,$
 FIELDNAME=JOBID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=TITLE ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=DESCRIPTN ,ALIAS=CMTS.END ,USAGE=A120 ,ACTUAL=A120,$
 FIELDNAME=START_DTE ,ALIAS= ,USAGE=A6YMD ,ACTUAL=A6 ,$
 FIELDNAME=FINISH_DTE ,ALIAS= ,USAGE=A6YMD ,ACTUAL=A6 ,$
 FIELDNAME=SALARY_GRADE ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELDNAME=SALARY ,ALIAS= ,USAGE=P10.2 ,ACTUAL=P5 ,$
 FIELDNAME= ,ALIAS=FILL.END ,USAGE=A1 ,ACTUAL=A8 ,$

In this example, the filler field corresponds to the last field of the EMPOSITION record type,
because LRF records must lie on a double-word boundary. The IDMS filler field is stored to
make the record length a multiple of 8. IDMS filler fields on physical record types
underlying LRF views must become filler fields. These filler fields can have any field name or
contain a blank; its ALIAS must include the .END suffix. Since the JOB record type is 144
bytes (total of ACTUAL formats), it does not need a filler; the last field DESCRIPTN only
requires an alias with an .END suffix.
5-22 iWay Software

Getting Started in CA-IDMS
USAGE in CA-IDMS
Master Files require you to specify field formats and lengths for USAGE and ACTUAL
parameters.

The USAGE and ACTUAL keywords describe the data format of the field. The USAGE
parameter defines the field length for the fields. Allow for the maximum possible number
of characters or digits including decimal points. You may include valid edit options without
increasing the length size.

Note: For network record types, the ACTUAL and USAGE formats of zoned CALC and zoned
index fields must be described as alphanumeric (A).

ACTUAL in CA-IDMS
The ACTUAL parameter defines the field length for COBOL fields found in the IDMS file. The
number of internal storage bytes used by COBOL determines the field’s actual length for
these formats:

Alphanumeric (A) Equals the number of characters described in the PICTURE
clause.

Zoned Decimal (Z) Equals the number of characters described in the PICTURE
clause.

Integer (I) Equals 2 or 4, corresponding to decimal lengths of 1-4 or 5-9 in
the PICTURE clause.

Floating-Point (F) Equals 4 bytes.

Double-Precision
(D)

Equals 8 bytes.

Packed Decimal (P) Equals (number of PICTURE digits / 2) + 1; excluding sign (S) or
implied decimal (V).
iWay Data Adapter Administration for MVS and VM 5-23

CA-IDMS Master Files
Use the following chart as a guide for describing ACTUAL formats:

Note:

1. For COMP-1 and COMP-2, allow for the maximum possible digits.

2. For COBOL DISPLAY fields with zoned decimal, server formats must be packed (P).

3. For COMP-1 and COMP-2, PICTURE clauses are not permitted for internal floating-point
formats (F and D).

Refer to the iWay SQL Reference manual for information on how client applications receive
IDMS data columns.

COBOL
Format

COBOL
PICTURE

Bytes of
Storage

ACTUAL
Format

USAGE
Format

DISPLAY X(4) 4 A4 A4

DISPLAY S99 2 Z2 P3

DISPLAY 9(5)V9 6 Z6.1 P8.1

DISPLAY 99 2 A2 A2

COMP S9 4 I2 I1

COMP S9(4) 4 I2 I4

COMP S9(5) 4 I4 I5

COMP S9(9) 4 I4 I9

COMP-1 - 4 F4 F6

COMP-2 - 8 D8 D15

COMP-3 9 1 P1 P1

COMP-3 S9V99 2 P2 P5.2

COMP-3 9(4)V9(3) 4 P4 P8.3

FIXED
BINARY(7)
(COMP-4)

B or XL1 4 I4 I7
5-24 iWay Software

Getting Started in CA-IDMS
GROUP Fields in CA-IDMS
The GROUP keyword identifies a set of fields following it with a single name. This GROUP
name is any unique name up to 48 characters in length. Its usage is similar to that of a
COBOL group name. Generally, this attribute is used for IDMS indexed or CALC fields.

Note:

• USAGE and ACTUAL format types for a GROUP field are always alphanumeric (A).

• USAGE and ACTUAL format lengths for a GROUP field are the sums of the field lengths
that form the GROUP field.

For example, a GROUP field called EMP_NAME is composed of two fields, FIRST_NAME and
LAST_NAME. Notice the USAGE and ACTUAL formats.

GROUP=EMP_NAME ,ALIAS= ,USAGE=A25 ,ACTUAL=A25 ,$
 FIELD=FIRST_NAME,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=LAST_NAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$

The FIELDTYPE keyword identifies indexed fields, both SPF and Integrated, on network
record types. Omit it for LRF records.

The IDMS Database Key
The database key of a network record type corresponding to a segment can optionally be
described as the last field in the segment. To specify a database key, use the following
values:

The database key is used to select records from entry segments when screening on
particular IDMS values in the user request. For a discussion of entry record retrieval,
see CA-IDMS Access Control on page 5-64.

Keyword Description

FIELDNAME Is any unique key. Can be a maximum of 48 characters.

ALIAS Value is DBKEY.

USAGE Value is I10.

ACTUAL Value is I4.
iWay Data Adapter Administration for MVS and VM 5-25

CA-IDMS Master Files
CA-IDMS Remote Descriptions
SEGTYPEs KLU and KL specify unique and non-unique segments for which the aggregate
fields are remotely described in another Master File. In other words, a KLU or KL segment
contains no field information; its fields are fully defined in another Master File. The CRFILE
keyword specifies the source or remote Master File. At execution time, the remote field
descriptions are, in effect, copied into the current Master File.

Generally, KLU and KL segment types are used when several Master Files are constructed for
the same IDMS subschema. They save typing and maintenance effort. Use KLU if the
underlying segment is unique (U); KL if the underlying segment is non-unique (S). Remote
descriptions have no logical implications regarding parent/descendant relationships nor
do they impact their implementation.

To specify a remote description, you must give the KLU or KL segment the same name as
the source segment in the remote Master File to ensure the proper use of field descriptions.
The source file is specified as the CRFILE value. For example:

SEGMENT=SALES,PARENT=DEPT,SEGTYPE=KL,CRFILE=RECORDS,$

This segment declaration indicates that the field descriptions for the SALES segment are
obtained from the SALES segment in the RECORDS Master File. The SEGTYPE for the SALES
segment in the RECORDS Master File cannot be KL or KLU—only U or S. Only field names
and their attributes from the source file are used; original segment attributes are not. The
source file does not have to be a file description as long as it describes the named segment.
5-26 iWay Software

Getting Started in CA-IDMS
Defining Intra-Record Structures With the OCCURS Segment
A common record structure is one where a field or group of adjacent fields is repeated in
the same record type. In COBOL and PL/I syntax, repeating intra-record structures are
defined through an OCCURS clause. The server equivalent of an OCCURS clause is an
OCCURS segment.

For example, the OFFICE record type contains the field OFFICE-PHONE that occurs three
times. The corresponding OFFICE segment can list three separate fields with different field
names, or alternately OFFICE-PHONE can be described in a separate descendant OCCURS
segment. Using the OCCURS method, each office phone is referenced by a single name (see
the Master File for EMPSS01). The graphic below depicts the non-OCCURS method and the
OCCURS method.

OCCURS segments have two attributes or keywords: ORDER and POSITION. The POSITION
keyword directs the server to OCCURS segments when non-repeating fields exist between
repeating fields. The ORDER keyword creates a fictitious count field that may be decoded.

Describing the Repeating Group to the Server in CA-IDMS
Any fixed- or variable-length record type described in COBOL can be mapped into a server
hierarchy using OCCURS segments. A simple OCCURS segment is a descendant of the
parent segment which contains non-repeating fields found in the IDMS record type. You
must specify the OCCURS keyword on the descendant segment declaration that describes
the repeating group. Like the COBOL OCCURS clause, the value of this keyword may be a
numeric constant or a field name. The numeric constant indicates a fixed number of
repetitions; a field name indicates a count field in the parent segment that maintains a
count of the number of occurrences.

OCCURS segments also describe parallel and nested intra-record hierarchical structures.
Parallel sets of repeating groups are described as multiple descendant segments of the
same parent. In a nested structure, where a repeating group contains another repeating
group, one OCCURS segment is the parent of another. Fixed and variable OCCURS
segments can be intermixed in any order.

O F F I C E
P H O N E _ 1
P H O N E _ 2
P H O N E _ 3

O F F _ C O D E

O F F _ P H O N E

O F F I C E

P H O N E S
O C C U R S = 3

N o n - O C C U R S O C C U R S
iWay Data Adapter Administration for MVS and VM 5-27

CA-IDMS Master Files
The restrictions for OCCURS segments are as follows:

• The count field for a variably-occurring repeating group must be located physically
before the repeating group in the parent of the OCCURS segment.

• A record structure that has a variable number of occurrences but no count field is not
within the scope of IDMS.

• The SEGTYPE for an OCCURS segment is specified as S or KL, indicating that it is a non-
unique segment.

• OCCURS segments must be defined in the Master File in the same order as they appear
in the actual record type, unless the POSITION attribute is used.

• OCCURS segments do not have a corresponding segment declaration in the Access File,
because the CA-IDMS Data Adapter simulates them using the parent record. OCCURS
segments do not generate any additional IDMS calls.

From the server standpoint, OCCURS segments are indistinguishable from other segments.
The server processes them, if referenced, in the usual top-to-bottom left-to-right retrieval
order.

For example, consider this COBOL budget record type:

01 BUDGET-RCD.
02 ACCOUNT PIC XXX.
02 ACTUAL-COUNT PIC 99.
02 PLANNED-AMT PIC 9(9) OCCURS 12 TIMES.
02 ACTUAL-AMT PIC 9(9) OCCURS 12 TIMES
 DEPENDING ON ACTUAL-COUNT.

The equivalent Master File is:

SEGMENT=BUDGET,SEGTYPE=S,$
 FIELD=ACCOUNT ,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=ACTUAL_COUNT ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
SEGMENT=PLANNED ,PARENT=BUDGET,SEGTYPE=S,OCCURS=12 ,$
 FIELD=PLANNED_AMT ,ALIAS= ,USAGE=P12 ,ACTUAL=Z9 ,$
SEGMENT=REAL_AMT,PARENT=BUDGET,SEGTYPE=S,OCCURS=ACTUAL_COUNT,$
 FIELD=ACTUAL_AMT ,ALIAS= ,USAGE=P12 ,ACTUAL=Z9 ,$
5-28 iWay Software

Getting Started in CA-IDMS
The mapping principle is very simple: the non-repeating field in the record type is
described in one parent segment, and the parallel COBOL OCCURS structures are made into
descendant OCCURS segments. The OCCURS keyword on the descendant segments
specifies either a number (fixed occurrences) or a count field (variable occurrences). In this
case, the count field ACTUAL_COUNT is located in the immediate parent segment called
BUDGET and is specified on the REAL_AMT descendant segment.

The diagram for this Master File example looks like:

If the PLANNED or REAL_AMT segments had repeating structures, they would in turn be
parents of OCCURS segments defined by the same principles. The BUDGET segment could
have other non-OCCURS descendants. The PLANNED and REAL_AMT segments might have
CALC- or index-based descendants. However, set-based descendants of this record type
would be tied to the BUDGET segment—not to the PLANNED or REAL_AMT segments.

BUDGET

PLANNED REAL_AMTS S
iWay Data Adapter Administration for MVS and VM 5-29

CA-IDMS Master Files
POSITION Attribute in CA-IDMS
As noted in the previous topic, OCCURS segments are defined in the same order as they
appear in the actual record type. In some cases, COBOL OCCURS clauses are separated by
non-repeating fields. The POSITION keyword in a Master File indicates that the repeating
fields are located in the middle of non-repeating fields.

The POSITION attribute can only be used for a repeating group with a fixed number of
occurrences. This means that the OCCURS attribute of the descendant segment must equal
a numeric constant and not a count field.

Suppose the previous COBOL record type looked like this:

01 BUDGET-RCD.
02 ACCOUNT PIC XXX.
02 PLANNED-AMT PIC 9(9) OCCURS 12 TIMES.
02 ACTUAL-COUNT PIC 99.
02 ACTUAL-AMT PIC 9(9) OCCURS 12 TIMES
 DEPENDING ON ACTUAL-COUNT.

Here, the two repeating structures PLANNED-AMT and ACTUAL-AMT are separated by the
non-repeating field ACTUAL-COUNT, which clearly belongs to the BUDGET segment. You
must indicate in the Master File that the first occurrence of the PLANNED segment will not
immediately follow the ACCOUNT field in the BUDGET segment. (The PLANNED-AMT field is
described in a separate descendant segment.) The POSITION keyword accomplishes this
task by directing the server to the descendant segment named PLANNED.

The corresponding Master File looks like this:

SEGMENT=BUDGET,SEGTYPE=S,$
 FIELD=ACCOUNT ,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=PLANNED_SEG1 ,ALIAS= ,USAGE=A108 ,ACTUAL=A108 ,$
 FIELD=ACTUAL_COUNT ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
SEGMENT=PLANNED ,PARENT=BUDGET,SEGTYPE=S,OCCURS=12,
 POSITION=PLANNED_SEG1 ,$
 FIELD=PLANNED_AMT ,ALIAS= ,USAGE=P12 ,ACTUAL=Z9 ,$
SEGMENT=REAL_AMT,PARENT=BUDGET,SEGTYPE=S,OCCURS=ACTUAL_COUNT ,$
 FIELD=ACTUAL_AMT ,ALIAS= ,USAGE=P12 ,ACTUAL=Z9 ,$

The POSITION keyword in the PLANNED segment names a field called PLANNED_SEG1 in
BUDGET, the immediate parent segment. PLANNED_SEG1 in the parent coincides with the
first field of the first occurrence in PLANNED, the OCCURS segment. The REAL_AMT
segment does not require a POSITION keyword, because the position of its first occurrence
is correctly inferred as following the last described field in the BUDGET segment.
5-30 iWay Software

Getting Started in CA-IDMS
In the previous example, the PLANNED_SEG1 spans all occurrences of the PLANNED
segment. As an alternative, 12 individual fields named PLANNED_SEG1 through
PLANNED_SEG12 could be described instead in the BUDGET segment. Each individual field
would need the appropriate numeric format. Then you could refer to any one of the 12
amount fields by its specific name or generically through the PLANNED_AMT field. The
POSITION attribute can always be used for this purpose, even when it is not required for
positioning the first position of an OCCURS segment located in the middle of the record
type.

ORDER Field in CA-IDMS
Sometimes the sequence of fields within an OCCURS segment is significant. For example,
each instance of the repeating field may represent one quarter of the year, but the segment
may not have a field that specifies which quarter it applies to.

ORDER is an optional counter used to identify the sequence number within a group of
repeating fields. Specify it when the order of data is important. The ORDER field does not
represent an existing field in the data source; it is used only for internal processing.

Syntax How to Identify an ORDER Field

The ORDER field must be the last field described in the OCCURS segment.The syntax is

FIELDNAME=name, ALIAS=ORDER, USAGE=In, ACTUAL=I4 ,$

where:

name

Is any valid field name.

In

Is an integer format.

Note:

• The ALIAS value must be ORDER.

• The ACTUAL format must be I4.

The ORDER field must be the last field defined in the OCCURS segment.
iWay Data Adapter Administration for MVS and VM 5-31

CA-IDMS Access Files
In requests, you can use the value of the ORDER field. You can also specify a DEFINE
statement in the Master File to translate it to more meaningful values. For example:

DEFINE QTR/A3 = DECODE ORDER(1 '1ST' 2 '2ND' 3 '3RD' 4 '4TH');

A subsequent request could include

SELECT TOT.TAXES FROM JOBMAST
WHERE QTR = 1

or:

SELECT QTR,BALANCE,INTEREST

CA-IDMS Access Files
An Access File is required to translate a request for network record types and LRF records
into the appropriate IDMS DML retrieval commands. This file description consists of 80-
character records called declarations in comma-delimited format (keyword=value). An
Access File contains three kinds of declarations:

• Subschema

• Segment

• Index

Subschema declarations identify the subschema used, the IDMS release under which the
subschema was compiled, the calling mode to be used to retrieve records, and whether a
trace is to be produced. Several subschema declarations may be specified in a single Access
File. Each subschema declaration is followed by its segment and index declarations.
Subschema Declaration Keywords in CA-IDMS on page 5-33 describes keywords for
subschema declarations.

Access segment declarations indicate the IDMS record information and the parent/
descendant relationship for each network record type or LRF record described as a
segment in a Master File. (Access segment declarations are not defined for OCCURS
segments.) Segment declarations can be specified in any order after their corresponding
subschema declaration. Segment Declaration Keywords for Network Record Types in CA-IDMS
on page 5-36 and Segment Declaration Keywords for LRF Records in CA-IDMS on page 5-39
describe segment declarations for network record types and LRF records, respectively.

Index declarations provide information about each IDMS index. They may also be in any
order—one for each indexed field described in the Master File—after their corresponding
subschema declaration. Index Declaration Keywords for Network Record Types in CA-IDMS on
page 5-41describes index declarations for network record types.
5-32 iWay Software

Getting Started in CA-IDMS
CA-IDMS Access File Syntax
Each declaration consists of a list of keyword and value pairs, separated by commas. The list
is free-form and may span several lines; keywords may be specified in any order. Each
declaration is completed with a comma followed by a dollar sign ($). For example, this
Access File contains three declarations:

SSCHEMA=PAYROLL,RELEASE=12,INDEXAREA=PRIMARY-IX-AREA,
 DBNAME=EMPDEMO,DICTNAME=APPLDICT,$
SEGNAME=ACCOUNT,RECORD=PAYREC,AREA=PAY-REGION,
 CLCFLD=EMPLOYEE_ID,CLCDUP=N,$
IXSET=IXREC-SSN,IXAREA=IX-AREA1,IXFLD=PERS_SSN,
 IXDUP=N,IXORD=A,$

Blank lines and lines starting with an asterisk (*) in column 1 are treated as comments.
Leading and trailing blanks around keywords and values are ignored. Values that contain
commas, equal signs, dollar signs, or spaces must be enclosed in single quotation marks.

Subschema Declaration Keywords in CA-IDMS
If your Master File defines record types and LRF records from multiple IDMS subschemas,
the Access File should contain multiple subschema declarations. After each subschema
declaration, list its segment and index declarations.

Subschema declarations for DML and LRF subschemas contain the following keywords;
certain keywords are optional as explained in the following summary chart.

Keyword Description

SSCHEMA Is the IDMS subschema name.

RELEASE Is the release of the IDMS software that was used in the last
compilation of the subschema. The value can be 10.2, 12, or 12.x
(where x is your release version).

MODE Indicates the type of IDMS access the data adapter is to perform.
Specify LR for LR and ASF records; DML is the default.

TRACE Is an optional keyword used for debugging purposes. It specifies
whether a basic trace of all IDMS calls or a detailed trace of all the
parameters passed to IDMS will be displayed. Values can be YES,
PARMS, or NO (NO is the default).

READY Is an optional keyword that specifies when an LRF record is built
from two or more physical record types located in several
database areas. The data adapter prepares or readies all the areas
of the subschema. Values can be ALL or null or omitted entirely.
iWay Data Adapter Administration for MVS and VM 5-33

CA-IDMS Access Files
CV Mode Only

Note: When running using DDS, Central Version must be used. DDS access is not supported
in local mode.

DBNAME Specifies the IDMS database name from the DBNAME table
corresponding to its subschema. It can be used in local or Central
Version mode to translate the subschema name into the proper
load module(s) for data access.

INDEXAREA Is the name of the primary SPF index area. Required for any
subschema with SPF indices.

Keyword Description

Keyword Description

DICTNAME Identifies a secondary dictionary load area, if the subschema is
not located in the primary dictionary or in a load PDS. Remember
that ASF subschemas are located in secondary dictionary load
areas by default; so, if your Access File describes an ASF record,
you must specify this keyword.

NODE Identifies the Distributed Database Systems (DDS) node location
of an IDMS distributed database. The value is the IDMS data
dictionary table entry that identifies the DDS node location of an
IDMS distributed database. This keyword is required only if DDS is
installed at a user site and if the subschema is located in a remote
site location.

DICTNODE Identifies the DDS node location of an IDMS distributed database
subschema in a secondary dictionary load area. The value is the
IDMS data dictionary table entry that identifies the DDS node
location of an IDMS distributed database subschema. This
keyword is required only if DDS is installed at the user site and if
the subschema is located in a remote site location.
5-34 iWay Software

Getting Started in CA-IDMS
Overriding DBNAME and DICTNAME in IDMS
You can dynamically override the DBNAME and DICTNAME parameters within the Access
File. This allows users to specify the DBNAME and DICTNAME for all IDMS Master File and
Access File pairs during a session by using a SET command, eliminating the need to modify
each Access File manually.

To override the DBNAME and DICTNAME, issue the SET commands outlined below. Once
the SET commands are issued, the DBNAME and DICTNAME specified will override the same
keywords in all Access Files during your session until you end your session or set the
DBNAME and DICTNAME to default.

If no SET command is issued, the default behavior is followed.

Syntax How to Set DBNAME and DICTNAME

SQL IDMSR SET DBNAME dbname
SQL IDMSR SET DICTNAME dictname

where:

dbname

Is the IDMS database name that you want to access.

dictname

Is the IDMS dictionary name that you want to access.

Note: These set commands can be included in any supported server profile

Syntax How to Display the Current Settings

To display the settings that are currently in effect, issue the following command from a
client application or from a remote procedure:

EX EDAEXEC 'SQL IDMSR SET ?'

Syntax How to Revert to Original Settings

To revert to original settings in the Access File, issue the following commands in a remote
procedure:

SQL IDMSR SET DBNAME DEFAULT
SQL IDMSR SET DICTNAME DEFAULT

Syntax Overriding the DBNAME and DICTNAME in All IDMS Access Files With SYSDIRL

SQL IDMSR SET DBNAME SYSDIRL
SQL IDMSR SET DICTNAME SYSDIRL
iWay Data Adapter Administration for MVS and VM 5-35

Overriding DBNAME and DICTNAME in IDMS
Segment Declaration Keywords for Network Record Types in CA-IDMS
Your use of keywords in segment declarations for DML record types depends on whether
the record type contains a CALC key, acts as a descendant segment, or contains an index.
The following keywords are common to all segment declarations:

If your record type is a CALC record type (contains a CALC key) include the two keywords
below. These keywords are required for all CALC record types, regardless of how their
parent/descendant relationships are implemented.

Record types are assigned parent/descendant relationships in the server. These
relationships are based on sets and CALC or index fields. Keywords for descendant
segments follow. Consult your Master File to determine if a segment is a descendant or
parent.

Keyword Description

SEGNAM Is the corresponding Master File segment name of the
DML record type.

RECORD Is the IDMS record type name.

AREA Is the IDMS area name that contains the record type.

Keyword Description

CLCFLD Is the Master File field name of the CALC field.

CLCDUP Indicates if the CALC field allows duplicates. The value
can be Y or N.
5-36 iWay Software

Getting Started in CA-IDMS
Field Keyword Description

 ACCESS Indicates the relationship that exists between record
types. The value CLC or IX specifies an embedded cross-
reference based on a CALC or indexed field. The value SET
indicates a physical relationship based on a set of
pointers.

Set-Based
(ACCESS=SET)

SETNAME Is the name of the set relating a descendant to its parent.

 SETMBR Specifies whether the set membership is mandatory/
automatic, mandatory/manual, optional/automatic, or
optional/manual. This information is used to verify set
membership at execution time. To determine the
appropriate membership value, check the set label on
your Bachman diagram. Values can be MA, MM, OA, or
OM.

GETOWN Allows or inhibits GET OWNER calls which obtain the
owner records from a member record type. If the value is
Y, the data adapter issues GET OWNER calls to retrieve the
owner record in the set when SEGTYPE is U, KLU. If the
value is N, GET OWNER calls are inhibited. Specify N only
when the set has no owner pointers and long member
record chains are apt to occur. When GET OWNER calls are
inhibited, the owner record type cannot be a descendant
of its member. In other words, if GET OWNER calls are
inhibited, SEGTYPE cannot be U or KLU.

MULTMBR Indicates whether the set, in which this record type
participates, contains more than one member record
type. Values can be Y or N.

 KEYFLD Is the server field that sequences the set. Select a field
from a parent or descendant segment as the value of
KEYFLD in the descendant segment declaration.

 SETORD A (ascending) or D (descending) for sorted set sequence;
required.

 SETDUP Y or N if duplicates are allowed. Required for sorted sets.
iWay Data Adapter Administration for MVS and VM 5-37

Overriding DBNAME and DICTNAME in IDMS
Example Describing One Subschema With Two Segments

This example shows one subschema with two segments that are CALC record types; the
INVOICE record type has a set-based relationship with the CUSTOMER record type.

SSCHEMA=SAMPSSCH,RELEASE=12,
SEGNAM=CUSTOMER,RECORD=CUSTOMER,AREA=CUSTOMER-REGION,
 CLCFLD=CUST_NUMBER,CLCDUP=N,$
SEGNAM=INVOICE,RECORD=INVOICE,AREA=INVO-REGION,
 CLCFLD=INV_NUMBER,CLCDUP=N,ACCESS=SET,
 SETNAME=CUSTOMER-INVO,SETMBR=MA,GETOWN=Y,MULTMBR=N,$

CALC-Based
(ACCESS=CLC)

KEYFLD Provides the search value to read CALC and index fields in
descendant segments. These search values are located in
parent segment fields. Specify the parent field name for
the value of KEYFLD in the descendant segment
declaration. The KEYFLD keyword is especially important
when the two record types in a parent/descendant
relationship are from different subschemas. The record
type that acts as the descendant segment is the entry
point into the second subschema. It must have a CALC
key (CLCFLD) or index set (SETNAME) with ACCESS=CLC
or ACCESS=IX, respectively. The descendant segment
declaration must also list the KEYFLD value from the
parent segment in the first subschema.

Index-Based
(ACCESS=IX)

KEYFLD See above.

SETNAME Is the IDMS name of the index set. A corresponding index
declaration is required (see Index Declaration Keywords for
Network Record Types in CA-IDMS on page 5-41).

Field Keyword Description
5-38 iWay Software

Getting Started in CA-IDMS
Example Describing Two Subschemas

The following example shows two subschemas. The INSURANCE-PLAN record type has a
CALC-based relationship with the COVERAGE record type.

SSCHEMA=EMPSS01,RELEASE=12,
SEGNAM=COVERAGE,RECORD=COVERAGE,AREA=INS-DEMO-REGION,$
SSCHEMA=EMPSS03,RELEASE=12,$
SEGNAM=INSURNCE,RECORD=INSURANCE-PLAN,
 AREA=INS-DEMO-REGION,CLCFLD=INS_PLAN_CODE,CLCDUP=N,
 ACCESS=CLC,KEYFLD=COV_CODE,$

If your record type contains an indexed field, you may suppress area sweeps when the
segment is used as a point of entry into the database. To prevent area sweeps, specify the
optional keyword below on the segment declaration. Only those record instances
connected to the specified index field are accessed.

Note: This optional keyword requires an index declaration (For more information, see Index
Declaration Keywords for Network Record Types in CA-IDMS on page 5-41).

Segment Declaration Keywords for LRF Records in CA-IDMS
Segment declaration keywords for LR and ASF records are basically the same as those for
network (DML) record types. Specified values, of course, differ.

Keyword Description

SEQFIELD Is the Master File field name (FIELDTYPE=I)
of the index.

Keyword Description

SEGNAM Is the corresponding Master File segment name of the LRF record.

RECORD Is the IDMS name of the LRF record.

LR The value is Y.

AREA Is the IDMS area name that contains physical record types.
Specify READY=ALL on the subschema declaration for more than
one area (if fields originate from many areas).
iWay Data Adapter Administration for MVS and VM 5-39

Overriding DBNAME and DICTNAME in IDMS
LRF records use embedded cross-references to create parent/descendant relationships.
Specify the following keywords for LRF records that act as descendant segments:

The KEYFLD and IXFLD keywords are required to implement parent/descendant
relationships. The KEYFLD keyword specifies a field from the parent segment that provides
search values. The value of IXFLD, in turn, is a field in the descendant segment that contains
equivalent values for KEYFLD. Any field may be selected for IXFLD provided that the record
possesses a null SELECT clause.

Suppose your Master File for one subschema contained two LRF records that act as parent
and descendant segments.

FILE=DEPTEMP,SUFFIX=IDMSR,$
SEGNAME=DEPTEMP,$
.
.
.
FIELD=EMP_ID ,ALIAS ,USAGE=A4 ,ACTUAL=A4,$
SEGNAME=EMPJOB,PARENT=DEPTEMP,SEGTYPE=S,$
FIELD=EMPLOYEE_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4,$
.
.
.

The common field is EMPLOYEE_ID; its field format is the same in both segments. The
EMPJOB segment is the descendant of DEPTEMP. The descendant segment declaration in
the Access File below contains KEYFLD and IXFLD values.

SSCHEMA=EMPSS06,RELEASE=12,MODE=LR,READY=ALL
 DBNAME=EMPDEMO,DICTNAME=APPLDICT,$
SEGNAM=DEPTEMP,RECORD=DEPT-EMPLOYEE,
 AREA=EMP-DEMO-REGION,LR=Y,$
SEGNAM=EMPJOB,RECORD=EMPLOYEE-JOB,
 AREA=ORG-DEMO-REGION,LR=Y,
 ACCESS=LR,KEYFLD=EMP_ID,IXFLD=EMPLOYEE_ID,$

If the EMPJOB segment (EMPLOYEE-JOB record) belonged to a different subschema, the
ACCESS example above would include another subschema declaration positioned between
the two segment declarations.

Keyword Description

ACCESS The value is LR.

KEYFLD Is the Master File field name found in the parent.

IXFLD Is the Master File field name found in the descendant.
5-40 iWay Software

Getting Started in CA-IDMS
Index Declaration Keywords for Network Record Types in CA-IDMS
The CA-IDMS Data Adapter supports two indexing schemes: the traditional method of
indexing, using the Sequential Processing Facility (SPF), and IDMS Integrated Indexes.
Under SPF, index entries are stored in separate index areas. As of IDMS Release 10, indexes
may be integrated with the database management system (DBMS).

The following keywords apply to declarations for both SPF and Integrated Indexes. See
CA-IDMS Access File Syntax on page 5-33 for an example of an index declaration.

Note:

• This declaration is not used in LRF Access Files.

• For subschemas with SPF indexing, the IXAREA keyword is required.

• For subschemas with Integrated Indexes, the IXAREA keyword is omitted unless the
index entries reside in a different area from record type being indexed.

A non-unique descendant with an SPF index may not have descendants (immediate or
several levels removed) that are related to the same index. This is due to the lack of an IDMS
command, which would restore currency after it has been disturbed by the record retrieval
of a descendant segment. This restriction does not apply to SPF unique descendants or
Integrated Index descendants.

Keyword Description

IXSET Is the IDMS setname of the index set.

IXFLD Is the corresponding Master File field name with FIELDTYPE=I.

IXDUP Indicates if duplicate index values are allowed. The value can be Y
or N.

IXORD Indicates sort order of index. The value can be A (ascending) or D
(descending).

IXAREA Is the IDMS area name of the index; usage varies, see below.
iWay Data Adapter Administration for MVS and VM 5-41

CA-IDMS Sample File Descriptions
CA-IDMS Sample File Descriptions
The following topics contain:

• The schema EMPSCHM.

• A network subschema for schema EMPSCHM, plus corresponding Master and Access
Files.

• An LRF subschema for schema EMPSCHM, plus corresponding Master and Access Files.

• A sample of a NULL SELECT clause that creates an LRF partial record occurrence.

• A sample from a subschema that contains SPF indexes.

Note: Some samples are annotated to illustrate specific clauses.

CA-IDMS Schema: EMPSCHM
This schema is the physical description of the IDMS EMPSCHM database. It contains the
following items:

1. Area-to-file and area-to-ddname mapping.

2. A CALC-based record.

3. A VIA-based record.

4. A sorted set ordered by the SKILL-LEVEL field.

5. A sorted set ordered by Integrated Indexes using the SKILL-LEVEL field.

6. An Integrated Index set ordered by the SKILL-NAME field.

ADD SCHEMA NAME IS EMPSCHM VERSION IS 1
SCHEMA DESCRIPTION IS 'EMPLOYEE DEMO DATABASE'
COMMENTS 'INSTALLATION: COMMONWEATHER CORPORATION'
 .

ADD FILE NAME IS EMPDEMO ASSIGN TO EMPDEMO
 DEVICE TYPE IS 3380
 .

 ADD FILE NAME IS INSDEMO ASSIGN TO INSDEMO
 DEVICE TYPE IS 3380
 .

 ADD FILE NAME IS ORGDEMO ASSIGN TO ORGDEMO
 DEVICE TYPE IS 3380

 .
5-42 iWay Software

Getting Started in CA-IDMS
 ADD AREA NAME IS EMP-DEMO-REGION
 RANGE IS 75001 THRU 75100
 WITHIN FILE EMPDEMO FROM 1 THRU 100
 .

 ADD AREA NAME IS ORG-DEMO-REGION
 RANGE IS 75151 THRU 75200
 WITHIN FILE ORGDEMO FROM 1 THRU 50
 .

 ADD AREA NAME IS INS-DEMO-REGION
 RANGE IS 75101 THRU 75150
 WITHIN FILE INSDEMO FROM 1 THRU 50
 .

 ADD RECORD NAME IS COVERAGE
 SHARE STRUCTURE OF RECORD COVERAGE VERSION IS 1
 RECORD ID IS 0400
 LOCATION MODE IS VIA EMP-COVERAGE SET
 WITHIN AREA INS-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES

 .

 ADD RECORD NAME IS DENTAL-CLAIM
 SHARE STRUCTURE OF RECORD DENTAL-CLAIM VERSION IS 1
 RECORD ID IS 0405
 LOCATION MODE IS VIA COVERAGE-CLAIMS SET
 WITHIN AREA INS-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES
 MINIMUM ROOT LENGTH IS 130 CHARACTERS
 MINIMUM FRAGMENT LENGTH IS RECORD LENGTH
 .

 ADD RECORD NAME IS DEPARTMENT
 SHARE STRUCTURE OF RECORD DEPARTMENT VERSION IS 1
 RECORD ID IS 0410
 LOCATION MODE IS CALC USING DEPT-ID-0410
 DUPLICATES NOT ALLOWED
 WITHIN AREA ORG-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES
 .

 ADD RECORD NAME IS EMPLOYEE
 SHARE STRUCTURE OF RECORD EMPLOYEE VERSION IS 1
 RECORD ID IS 0415
 LOCATION MODE IS CALC USING EMP-ID-0415
 DUPLICATES NOT ALLOWED
 WITHIN AREA EMP-DEMO-REGION
 OFFSET 2 PAGES FOR 98 PAGES
 .
iWay Data Adapter Administration for MVS and VM 5-43

CA-IDMS Sample File Descriptions
 ADD RECORD NAME IS EMPOSITION
 SHARE STRUCTURE OF RECORD EMPOSITION VERSION IS 1
 RECORD ID IS 0420
 LOCATION MODE IS VIA EMP-EMPOSITION SET
 WITHIN AREA EMP-DEMO-REGION
 OFFSET 2 PAGES FOR 98 PAGES
 .

 ADD RECORD NAME IS EXPERTISE
 SHARE STRUCTURE OF RECORD EXPERTISE VERSION IS 1
 RECORD ID IS 0425
 LOCATION MODE IS VIA EMP-EXPERTISE SET
 WITHIN AREA EMP-DEMO-REGION
 OFFSET 2 PAGES FOR 98 PAGES
 .

 ADD RECORD NAME IS HOSPITAL-CLAIM
 SHARE STRUCTURE OF RECORD HOSPITAL-CLAIM VERSION IS 1
 RECORD ID IS 0430
 LOCATION MODE IS VIA COVERAGE-CLAIMS SET
 WITHIN AREA INS-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES

 .

 ADD RECORD NAME IS INSURANCE-PLAN
 SHARE STRUCTURE OF RECORD INSURANCE-PLAN VERSION IS 1|
 RECORD ID IS 0435
 LOCATION MODE IS CALC USING INS-PLAN-CODE-0435
 DUPLICATES NOT ALLOWED
 WITHIN AREA INS-DEMO-REGION
 OFFSET 1 PAGE FOR 1 PAGE
 .

 ADD RECORD NAME IS JOB
 SHARE STRUCTURE OF RECORD JOB VERSION IS 1
 RECORD ID IS 0440
 LOCATION MODE IS CALC USING JOB-ID-0440
 DUPLICATES NOT ALLOWED
 WITHIN AREA ORG-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES
 MINIMUM ROOT LENGTH IS CONTROL LENGTH
 MINIMUM FRAGMENT LENGTH IS RECORD LENGTH
 CALL IDMSCOMP BEFORE STORE
 CALL IDMSCOMP BEFORE MODIFY
 CALL IDMSDCOM AFTER GET
 .
5-44 iWay Software

Getting Started in CA-IDMS
 ADD RECORD NAME IS NON-HOSP-CLAIM
 SHARE STRUCTURE OF RECORD NON-HOSP-CLAIM VERSION IS 1
 RECORD ID IS 0445
 LOCATION MODE IS VIA COVERAGE-CLAIMS SET
 WITHIN AREA INS-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES
 MINIMUM ROOT LENGTH IS 248 CHARACTERS
 MINIMUM FRAGMENT LENGTH IS RECORD LENGTH
 .

 ADD RECORD NAME IS OFFICE
 SHARE STRUCTURE OF RECORD OFFICE VERSION IS 1
 RECORD ID IS 0450
 LOCATION MODE IS CALC USING OFFICE-CODE-0450
 DUPLICATES NOT ALLOWED
 WITHIN AREA ORG-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES
 .

 ADD RECORD NAME IS SKILL
 SHARE STRUCTURE OF RECORD SKILL VERSION IS 1
 RECORD ID IS 0455
 LOCATION MODE IS CALC USING SKILL-ID-0455
 DUPLICATES NOT ALLOWED
 WITHIN AREA ORG-DEMO-REGION
 OFFSET 2 PAGES FOR 48 PAGES

 .

 ADD RECORD NAME IS STRUCTURE
 SHARE STRUCTURE OF RECORD STRUCTURE VERSION IS 1
 RECORD ID IS 0460
 LOCATION MODE IS VIA MANAGES SET
 WITHIN AREA EMP-DEMO-REGION
 OFFSET 2 PAGES FOR 98 PAGES
 .
iWay Data Adapter Administration for MVS and VM 5-45

CA-IDMS Sample File Descriptions
 ADD SET NAME IS COVERAGE-CLAIMS
 ORDER IS LAST
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS COVERAGE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS HOSPITAL-CLAIM
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 MEMBER IS NON-HOSP-CLAIM
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 MEMBER IS DENTAL-CLAIM
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 .

 ADD SET NAME IS DEPT-EMPLOYEE
 ORDER IS SORTED
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS DEPARTMENT
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS EMPLOYEE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 OPTIONAL AUTOMATIC
 ASCENDING KEY IS (EMP-LAST-NAME-0415
 EMP-FIRST-NAME-0415)
 DUPLICATES LAST

 .
5-46 iWay Software

Getting Started in CA-IDMS
 ADD SET NAME IS EMP-COVERAGE
 ORDER IS FIRST
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS EMPLOYEE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS COVERAGE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 .

 ADD SET NAME IS EMP-EMPOSITION
 ORDER IS FIRST
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS EMPLOYEE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS EMPOSITION
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 .

 ADD SET NAME IS EMP-EXPERTISE
 ORDER IS SORTED
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS EMPLOYEE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS EXPERTISE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 DESCENDING KEY IS (SKILL-LEVEL-0425)
 DUPLICATES FIRST

 .
iWay Data Adapter Administration for MVS and VM 5-47

CA-IDMS Sample File Descriptions
 ADD SET NAME IS EMP-NAME-NDX
 ORDER IS SORTED
 MODE IS INDEX BLOCK CONTAINS 40 KEYS
 OWNER IS SYSTEM
 WITHIN AREA EMP-DEMO-REGION
 OFFSET 1 PAGE FOR 1 PAGE
 MEMBER IS EMPLOYEE
 INDEX DBKEY POSITION IS AUTO
 OPTIONAL AUTOMATIC
 ASCENDING KEY IS (EMP-LAST-NAME-0415
 EMP-FIRST-NAME-0415)
 COMPRESSED
 DUPLICATES LAST
 .

 ADD SET NAME IS JOB-EMPOSITION
 ORDER IS NEXT
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS JOB
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS EMPOSITION
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 OPTIONAL MANUAL
 .

 ADD SET NAME IS JOB-TITLE-NDX
 ORDER IS SORTED
 MODE IS INDEX BLOCK CONTAINS 30 KEYS
 OWNER IS SYSTEM
 WITHIN AREA ORG-DEMO-REGION
 OFFSET 1 PAGE FOR 1 PAGE
 MEMBER IS JOB
 INDEX DBKEY POSITION IS AUTO
 OPTIONAL AUTOMATIC
 ASCENDING KEY IS (TITLE-0440)
 DUPLICATES NOT ALLOWED

 .
5-48 iWay Software

Getting Started in CA-IDMS
 ADD SET NAME IS MANAGES
 ORDER IS NEXT
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS EMPLOYEE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS STRUCTURE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 .

 ADD SET NAME IS OFFICE-EMPLOYEE
 ORDER IS SORTED
 MODE IS INDEX BLOCK CONTAINS 30 KEYS
 OWNER IS OFFICE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS EMPLOYEE
 INDEX DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 OPTIONAL AUTOMATIC
 ASCENDING KEY IS (EMP-LAST-NAME-0415
 EMP-FIRST-NAME-0415)
 COMPRESSED
 DUPLICATES LAST
 .

 ADD SET NAME IS REPORTS-TO
 ORDER IS NEXT
 MODE IS CHAIN LINKED TO PRIOR
 OWNER IS EMPLOYE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS STRUCTURE
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 OPTIONAL MANUAL

 .
iWay Data Adapter Administration for MVS and VM 5-49

CA-IDMS Sample File Descriptions
 ADD SET NAME IS SKILL-EXPERTISE
 ORDER IS SORTED
 MODE IS INDEX BLOCK CONTAINS 30 KEYS
 OWNER IS SKILL
 NEXT DBKEY POSITION IS AUTO
 PRIOR DBKEY POSITION IS AUTO
 MEMBER IS EXPERTISE
 INDEX DBKEY POSITION IS AUTO
 LINKED TO OWNER
 OWNER DBKEY POSITION IS AUTO
 MANDATORY AUTOMATIC
 DESCENDING KEY IS (SKILL-LEVEL-0425)
 DUPLICATES FIRST
 .

 ADD SET NAME IS SKILL-NAME-NDX
 ORDER IS SORTED
 MODE IS INDEX BLOCK CONTAINS 30 KEYS
 OWNER IS SYSTEM
 WITHIN AREA ORG-DEMO-REGION
 OFFSET 1 PAGE FOR 1 PAGE
 MEMBER IS SKILL
 INDEX DBKEY POSITION IS AUTO
 OPTIONAL AUTOMATIC
 ASCENDING KEY IS (SKILL-NAME-0455)
 DUPLICATES NOT ALLOWED
 .
 VALIDATE
 .
5-50 iWay Software

Getting Started in CA-IDMS
CA-IDMS Network Subschema: EMPSS01
This subschema shows the network view of schema EMPSCHM.

ADD SUBSCHEMA NAME IS EMPSS01
 OF SCHEMA NAME IS EMPSCHM VERSION 1
DMCL NAME IS EMPDMCL
 OF SCHEMA NAME IS EMPSCHM VERSION 1
COMMENTS 'THIS IS THE COMPLETE VIEW OF EMPSCHM'.
ADD AREA NAME IS EMP-DEMO-REGION.
ADD AREA NAME IS INS-DEMO-REGION.
ADD AREA NAME IS ORG-DEMO-REGION.
ADD RECORD NAME IS COVERAGE.
ADD RECORD NAME IS DENTAL-CLAIM.
ADD RECORD NAME IS DEPARTMENT.
ADD RECORD NAME IS EMPLOYEE.
ADD RECORD NAME IS EMPOSITION.
ADD RECORD NAME IS EXPERTISE.
ADD RECORD NAME IS HOSPITAL-CLAIM.
ADD RECORD NAME IS INSURANCE-PLAN.
ADD RECORD NAME IS JOB.
ADD RECORD NAME IS NON-HOSP-CLAIM.
ADD RECORD NAME IS OFFICE.
ADD RECORD NAME IS SKILL.
ADD RECORD NAME IS STRUCTURE.
ADD SET COVERAGE-CLAIMS.
ADD SET DEPT-EMPLOYEE.
ADD SET EMP-COVERAGE.
ADD SET EMP-EXPERTISE.
ADD SET EMP-NAME-NDX.
ADD SET EMP-EMPOSITION.
ADD SET JOB-EMPOSITION.
ADD SET JOB-TITLE-NDX.
ADD SET MANAGES.
ADD SET OFFICE-EMPLOYEE.
ADD SET REPORTS-TO.
ADD SET SKILL-EXPERTISE.
ADD SET SKILL-NAME-NDX.
GENERATE.
iWay Data Adapter Administration for MVS and VM 5-51

CA-IDMS Sample File Descriptions
CA-IDMS Master File for Network
This Master File corresponds to network subschema EMPSS01.

FILE=EMPFULL,SUFFIX=IDMSR ,$

SEGNAME=DEPT,$
 FIELDNAME=DEPT_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=DEPT_NAME ,ALIAS= ,USAGE=A45 ,ACTUAL=A45 ,$
 FIELDNAME=DEPT_HEAD ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=DEPT_DBKEY ,ALIAS=DBKEY ,USAGE=I10 ,ACTUAL=I4 ,$

SEGNAME=EMPLOYE,PARENT=DEPT,SEGTYPE=S,$
 FIELDNAME=EMP_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 GROUP=EMP_NAME ,ALIAS= ,USAGE=A25 ,ACTUAL=A25 ,$
 FIELDNAME=FIRST_NAME,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=LAST_NAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=EMP_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=EMP_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=EMP_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=EMP_FULL_ZIP ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=EMP_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELDNAME=EMP_ZIP_L ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=EMP_PHONE ,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=STATUS ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=SOC_SEC_NUM ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=EMP_STRT_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=EMP_TERM_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=EMP_BRTH_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=EMP_DBKEY ,ALIAS=DBKEY ,USAGE=I10 ,ACTUAL=I4 ,$

SEGNAME=OFFICE,PARENT=EMPLOYE,SEGTYPE=U,$
 FIELDNAME=OFF_CODE ,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELDNAME=OFF_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=OFF_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=OFF_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=OFF_FULL_ZIP ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=OFF_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELDNAME=OFF_ZIP_L ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=O_PHONES ,ALIAS= ,USAGE=A21 ,ACTUAL=A21 ,$
 FIELDNAME=OFF_AREA_CDE,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELDNAME=SPEED_DIAL ,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$

SEGNAME=PHONES,PARENT=OFFICE,SEGTYPE=S,OCCURS=3,POSITION=O_PHONES ,$
 FIELDNAME=OFF_PHONE ,ALIAS= ,USAGE=A7 ,ACTUAL=A7 ,$
 FIELDNAME=LINE_NO ,ALIAS=ORDER ,USAGE=I4 ,ACTUAL=I4 ,$

SEGNAME=STRUCTUR,PARENT=EMPLOYE,SEGTYPE=S,$
 FIELDNAME=STRUCTURE_CD,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=STRUCTURE_DT,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
5-52 iWay Software

Getting Started in CA-IDMS
SEGNAME=SUBORDS,PARENT=STRUCTUR,SEGTYPE=U,$
 FIELDNAME=SUB_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 GROUP=SUB_NAME ,ALIAS= ,USAGE=A25 ,ACTUAL=A25 ,$
 FIELDNAME=SUB_F_NAME,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=SUB_L_NAME,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=SUB_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=SUB_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=SUB_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=SUB_FULL_ZIP ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=SUB_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELDNAME=SUB_ZIP_L ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=SUB_PHONE ,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=SUB_STATUS ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=SUB_SSN ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=SUB_STRT_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=SUB_TERM_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=SUB_BRTH_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$

SEGNAME=EMPOSIT,PARENT=EMPLOYE,SEGTYPE=S,$
 FIELDNAME=POS_STRT_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=POS_FIN_DTE ,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=SALARY_GRADE,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELDNAME=SALARY_AMT ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME=BONUS_PCT ,ALIAS= ,USAGE=P4 ,ACTUAL=P2 ,$
 FIELDNAME=COMMIS_PCT ,ALIAS= ,USAGE=P4 ,ACTUAL=P2 ,$
 FIELDNAME=OVERTIME_PCT,ALIAS= ,USAGE=P5.2 ,ACTUAL=P2 ,$

SEGNAME=JOB,PARENT=EMPOSIT,SEGTYPE=U,$
 FIELDNAME=JOB_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=TITLE ,ALIAS= ,USAGE=A20 ,ACTUAL=A20,
 FIELDTYPE=I,$
 DEFINE SHORTTITLE/A10 = EDIT(JTIT,'9999999999$'); ,$
 FIELDNAME=JOB_DESC ,ALIAS= ,USAGE=A120 ,ACTUAL=A120 ,$
 FIELDNAME=REQUIREMENTS,ALIAS= ,USAGE=A120 ,ACTUAL=A120 ,$
 FIELDNAME=MIN_SALARY ,ALIAS= ,USAGE=P12.2,ACTUAL=Z8 ,$
 FIELDNAME=MAX_SALARY ,ALIAS= ,USAGE=P12.2,ACTUAL=Z8 ,$
 FIELDNAME=SAL_GRADE_1 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELDNAME=SAL_GRADE_2 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELDNAME=SAL_GRADE_3 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELDNAME=SAL_GRADE_4 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELDNAME=POSITION_NUM,ALIAS= ,USAGE=P4 ,ACTUAL=Z3 ,$
 FIELDNAME=NUM_OPEN ,ALIAS= ,USAGE=P4 ,ACTUAL=Z3 ,$

SEGNAME=EXPERTSE,PARENT=EMPLOYE,SEGTYPE=S,$
 FIELDNAME=SKILL_LEVEL ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=EXPERT_DTE ,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
iWay Data Adapter Administration for MVS and VM 5-53

CA-IDMS Sample File Descriptions
SEGNAME=SKILL,PARENT=EXPERTSE,SEGTYPE=U,$
 FIELDNAME=SKILL_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=SKILL_NAME ,ALIAS= ,USAGE=A12 ,ACTUAL=A12,
 FIELDTYPE=I,$
 FIELDNAME=SKILL_DESC ,ALIAS= ,USAGE=A60 ,ACTUAL=A60 ,$

SEGNAME=COVERAGE,PARENT=EMPLOYE,SEGTYPE=S,$
 FIELDNAME=COV_SEL_DT ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=COV_TERM_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=COVER_TYPE ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=COV_CODE ,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$

SEGNAME=HOSPITAL,PARENT=COVERAGE,SEGTYPE=S,$
 FIELDNAME=H_CLAIM_DTE ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=H_FIRST_NAME,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=H_LAST_NAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=H_BIRTH_DTE ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=H_SEX ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=H_RELATED_BY,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=HOSP_NAME ,ALIAS= ,USAGE=A25 ,ACTUAL=A25 ,$
 FIELDNAME=HOSP_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=HOSP_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=HOSP_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=HOSP_FUL_ZIP ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=HOSP_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELDNAME=HOSP_ZIP_L,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=ADMITTED ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=DISCHARGED ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=H_DIAGNOSIS1,ALIAS= ,USAGE=A60 ,ACTUAL=A60 ,$
 FIELDNAME=H_DIAGNOSIS2,ALIAS= ,USAGE=A60 ,ACTUAL=A60 ,$
 FIELDNAME=WARD_DAYS ,ALIAS= ,USAGE=P5 ,ACTUAL=P3 ,$
 FIELDNAME=WARD_RATE ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME=WARD_TOTAL ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME=SEMI_DAYS ,ALIAS= ,USAGE=P5 ,ACTUAL=P3 ,$
 FIELDNAME=SEMI_RATE ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME=SEMI_TOTAL ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME=DELIVERY_TOT,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME=ANESTHES_TOT,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME=LAB_TOT ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELDNAME= ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=CLAIM_MONTH ,ALIAS=CMO ,USAGE=I2 ,ACTUAL=Z2 ,$
5-54 iWay Software

Getting Started in CA-IDMS
SEGNAME=NON_HOSP,SEGTYPE=S,PARENT=COVERAGE,$
 FIELDNAME=N_CLAIM_DTE ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=N_FIRST_NAME,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=N_LAST_NAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=N_BIRTH_DTE ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=N_SEX ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=N_RELATED_BY,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=PHYS_FNAME ,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=PHYS_LNAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=PHYS_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=PHYS_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=PHYS_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=PHYS_FUL_ZIP ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=PHYS_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELDNAME=PHYS_ZIP_L,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=PHYS_ID ,ALIAS= ,USAGE=P6 ,ACTUAL=Z6 ,$
 FIELDNAME=P_DIAGNOSIS1,ALIAS= ,USAGE=A60 ,ACTUAL=A60 ,$
 FIELDNAME=P_DIAGNOSIS2,ALIAS= ,USAGE=A60 ,ACTUAL=A60 ,$
 FIELDNAME=P_NO_OF_PROC,ALIAS= ,USAGE=I2 ,ACTUAL=I2 ,$
 FIELDNAME= ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$

SEGNAME=PHYSCHRG,SEGTYPE=S,PARENT=NON_HOSP,OCCURS=P_NO_OF_PROC ,$
 FIELDNAME=P_SERVICE_DT,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=PHYS_PROC_CD,ALIAS= ,USAGE=P4 ,ACTUAL=Z4 ,$
 FIELDNAME=P_SERV_DESC ,ALIAS= ,USAGE=A60 ,ACTUAL=A60 ,$
 FIELDNAME=PHYS_FEE ,ALIAS= ,USAGE=P11.2,ACTUAL=P5 ,$
 FIELDNAME= ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=PHYS_CHRG_NO,ALIAS=ORDER ,USAGE=I4 ,ACTUAL=I4 ,$

SEGNAME=DENTAL,SEGTYPE=S,PARENT=COVERAGE,$
 FIELDNAME=D_CLAIM_DTE ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=D_FIRST_NAME,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=D_LAST_NAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=D_BIRTH_DTE ,ALIAS= ,USAGE=I6YMD,ACTUAL=Z6 ,$
 FIELDNAME=D_SEX ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=D_RELATED_BY,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=DENT_FNAME ,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=DENT_LNAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=DENT_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=DENT_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=DENT_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=DENT_FUL_ZIP ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=DENT_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELDNAME=DENT_ZIP_L,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=DENT_LICENSE,ALIAS= ,USAGE=P6 ,ACTUAL=Z6 ,$
 FIELDNAME=D_NO_OF_PROC,ALIAS= ,USAGE=I2 ,ACTUAL=I2 ,$
 FIELDNAME= ,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$
iWay Data Adapter Administration for MVS and VM 5-55

CA-IDMS Sample File Descriptions
SEGNAME=DENTCHRG,SEGTYPE=S,PARENT=DENTAL,OCCURS=D_NO_OF_PROC,$
 FIELDNAME=TOOTH_NUM ,ALIAS= ,USAGE=P2 ,ACTUAL=Z2 ,$
 FIELDNAME=D_SERVICE_DT,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELDNAME=DENT_PROC_CD,ALIAS= ,USAGE=P4 ,ACTUAL=Z4 ,$
 FIELDNAME=D_SERV_DESC ,ALIAS= ,USAGE=A60 ,ACTUAL=A60 ,$
 FIELDNAME=DENT_FEE ,ALIAS= ,USAGE=P11.2,ACTUAL=P5 ,$
 FIELDNAME= ,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELDNAME=DENT_CHRG_NO,ALIAS=ORDER ,USAGE=I9 ,ACTUAL=I4 ,$

SEGNAME=INSURNCE,PARENT=COVERAGE,SEGTYPE=U,$
 FIELDNAME=INS_PLAN_CDE,ALIAS= ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELDNAME=INS_CO_NAME ,ALIAS= ,USAGE=A45 ,ACTUAL=A45 ,$
 FIELDNAME=INS_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELDNAME=INS_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=INS_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=INS_FULL_ZIP ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELDNAME=INS_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELDNAME=INS_ZIP_L ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=INS_PHONE ,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=INS_GROUP_NO,ALIAS= ,USAGE=A6 ,ACTUAL=A6 ,$
 FIELDNAME=DEDUCT ,ALIAS= ,USAGE=P12.2,ACTUAL=P5 ,$
 FIELDNAME=MAX_LIFE_CST,ALIAS= ,USAGE=P12.2,ACTUAL=P5 ,$
 FIELDNAME=FAMILY_COST ,ALIAS= ,USAGE=P12.2,ACTUAL=P5 ,$
 FIELDNAME=DEPENDNT_CST,ALIAS= ,USAGE=P12.2,ACTUAL=P5 ,$
5-56 iWay Software

Getting Started in CA-IDMS
CA-IDMS Access File for Network
This Access File is associated with network subschema EMPSS01 and corresponds to its
Master File.

SSCHEMA=EMPSS01,RELEASE=12,MODE=DML,TRACE=NO,READY=,$
SEGNAM=DEPT,RECORD=DEPARTMENT,AREA=ORG-DEMO-REGION,
 CLCFLD=DEPT_ID,CLCDUP=N,$
SEGNAM=EMPLOYE,RECORD=EMPLOYEE,AREA=EMP-DEMO-REGION,
 CLCFLD=EMP_ID,CLCDUP=N,ACCESS=SET,SETNAME=DEPT-EMPLOYEE,
 SETMBR=OA,GETOWN=Y,MULTMBR=N,$
SEGNAM=OFFICE,RECORD=OFFICE,AREA=ORG-DEMO-REGION,
 CLCFLD=OFF_CODE,CLCDUP=N,ACCESS=SET,SETNAME=OFFICE-EMPLOYEE,
 SETMBR=OA,GETOWN=Y,MULTMBR=N,$
SEGNAM=STRUCTUR,RECORD=STRUCTURE,AREA=EMP-DEMO-REGION,
 ACCESS=SET,SETNAME=MANAGES,SETMBR=MA,GETOWN=Y,MULTMBR=N,$
SEGNAM=SUBORDS,RECORD=EMPLOYEE,AREA=EMP-DEMO-REGION,
 CLCFLD=SUB_ID,CLCDUP=N,ACCESS=SET,SETNAME=REPORTS-TO,
 SETMBR=OM,GETOWN=Y,MULTMBR=N,$
SEGNAM=EMPOSIT,RECORD=EMPOSITION,AREA=EMP-DEMO-REGION,
 ACCESS=SET,SETNAME=EMP-EMPOSITION,SETMBR=MA,GETOWN=Y,MULTMBR=N,$
SEGNAM=JOB,RECORD=JOB,AREA=ORG-DEMO-REGION,
 CLCFLD=JOB_ID,CLCDUP=N,ACCESS=SET,SETNAME=JOB-EMPOSITION,
 SETMBR=OM,GETOWN=Y,MULTMBR=N,SEQFIELD=TITLE,$
SEGNAM=EXPERTSE,RECORD=EXPERTISE,AREA=EMP-DEMO-REGION,
 ACCESS=SET,SETNAME=EMP-EXPERTISE,KEYFLD=SKILL_LEVEL,SETORD=D,
 SETDUP=Y,SETMBR=MA,GETOWN=Y,MULTMBR=N,$
SEGNAM=SKILL,RECORD=SKILL,AREA=ORG-DEMO-REGION,
 CLCFLD=SKILL_ID,CLCDUP=N,ACCESS=SET,SETNAME=SKILL-EXPERTISE,
 KEYFLD=SKILL_LEVEL,SETORD=D,SETDUP=Y,
 SETMBR=MA,GETOWN=Y,MULTMBR=N,SEQFIELD=SKILL_NAME,$
SEGNAM=COVERAGE,RECORD=COVERAGE,AREA=INS-DEMO-REGION,
 ACCESS=SET,SETNAME=EMP-COVERAGE,SETMBR=MA,GETOWN=Y,MULTMBR=N,$
SEGNAM=HOSPITAL,RECORD=HOSPITAL-CLAIM,AREA=INS-DEMO-REGION,
 ACCESS=SET,SETNAME=COVERAGE-CLAIMS,SETMBR=MA,GETOWN=Y,MULTMBR=Y,$
SEGNAM=NON_HOSP,RECORD=NON-HOSP-CLAIM,AREA=INS-DEMO-REGION,
 ACCESS=SET,SETNAME=COVERAGE-CLAIMS,SETMBR=MA,GETOWN=Y,MULTMBR=Y,$
SEGNAM=DENTAL,RECORD=DENTAL-CLAIM,AREA=INS-DEMO-REGION,
 ACCESS=SET,SETNAME=COVERAGE-CLAIMS,SETMBR=MA,GETOWN=Y,MULTMBR=Y,$
IXSET=JOB-TITLE-NDX,IXFLD=TITLE,IXDUP=N,IXORD=A,
 IXAREA=INS-DEMO-REGION,$
IXSET=SKILL-NAME-NDX,IXFLD=SKILL_NAME,IXDUP=N,IXORD=D,
 IXAREA=EMP-DEMO-REGION,$
SEGNAM=INSURNCE,RECORD=INSURANCE-PLAN,AREA=INS-DEMO-REGION,
 CLCFLD=INS_PLAN_CDE,CLCDUP=N,ACCESS=CLC,KEYFLD=COV_CODE,$
iWay Data Adapter Administration for MVS and VM 5-57

CA-IDMS Sample File Descriptions
CA-IDMS LRF Subschema: EMPSS02
This subschema shows the LRF view of schema EMPSCHM. It contains the following items:

1. Physical record types that are used to create logical records.

2. A SELECT clause for CALC access.

3. A SELECT ELEMENT clause.

4. A SELECT NULL clause.

5. A SELECT INDEX clause.

ADD SUBSCHEMA NAME IS EMPSS02
 OF SCHEMA NAME IS EMPSCHM VERSION 1
 USAGE IS LR
DMCL NAME IS EMPDMCL
 OF SCHEMA NAME IS EMPSCHM VERSION 1
COMMENTS 'THIS IS THE COMPLETE VIEW OF EMPSCHM'.
ADD AREA NAME IS EMP-DEMO-REGION.
ADD AREA NAME IS ORG-DEMO-REGION.
ADD RECORD NAME IS DEPARTMENT.
ADD RECORD NAME IS EMPLOYEE.
ADD RECORD NAME IS EMPOSITION.
ADD RECORD NAME IS JOB.
ADD SET DEPT-EMPLOYEE.
ADD SET EMP-NAME-NDX.
ADD SET EMP-EMPOSITION.
ADD SET JOB-EMPOSITION.
ADD SET JOB-TITLE-NDX.
ADD
 LOGICAL RECORD NAME IS DEPT-EMP-POS
 ELEMENTS ARE DEPARTMENT
 EMPLOYEE
 EMPOSITION.
5-58 iWay Software

Getting Started in CA-IDMS
ADD
PATH-GROUP NAME IS OBTAIN DEPT-EMP-POS
 SELECT FOR FIELDNAME-EQ DEPT-ID-0410
 OBTAIN DEPARTMENT
 WHERE CALCKEY EQ DEPT-ID-0410 OF REQUEST
 IF DEPT-EMPLOYEE IS NOT EMPTY
 OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE
 IF EMP-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN EMP-EMPOSITION
 SELECT FOR FIELDNAME-EQ EMP-ID-0415
 OBTAIN EMPLOYEE
 WHERE CALCKEY EQ EMP-ID-0415 OF REQUEST
 IF DEPT-EMPLOYEE MEMBER
 OBTAIN OWNER WITHIN DEPT-EMPLOYEE
 IF EMP-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN EMP-EMPOSITION
 SELECT FOR ELEMENT DEPARTMENT
 OBTAIN EACH DEPARTMENT WITHIN ORG-DEMO-REGION
 IF DEPT-EMPLOYEE IS NOT EMPTY
 OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE
 IF EMP-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN EMP-EMPOSITION
 SELECT FOR ELEMENT EMPLOYEE
 OBTAIN EACH EMPLOYEE WITHIN EMP-DEMO-REGION
 IF DEPT-EMPLOYEE MEMBER
 OBTAIN OWNER WITHIN DEPT-EMPLOYEE
 IF EMP-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN EMP-EMPOSITION
 SELECT FOR ELEMENT EMPOSITION
 OBTAIN EACH EMPOSITION WITHIN EMP-DEMO-REGION
 OBTAIN OWNER WITHIN EMP-EMPOSITION
 IF DEPT-EMPLOYEE MEMBER
 OBTAIN OWNER WITHIN DEPT-EMPLOYEE
 SELECT
 OBTAIN EACH DEPARTMENT WITHIN ORG-DEMO-REGION
 IF DEPT-EMPLOYEE IS NOT EMPTY
 OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE
 IF EMP-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN EMP-EMPOSITION.
ADD
 LOGICAL RECORD NAME IS JOB-EMPOSITION
 ELEMENTS ARE JOB
 EMPOSITION.
iWay Data Adapter Administration for MVS and VM 5-59

CA-IDMS Sample File Descriptions
ADD
PATH-GROUP NAME IS OBTAIN JOB-EMPOSITION
 SELECT FOR FIELDNAME-EQ JOB-ID-0440
 OBTAIN JOB
 WHERE CALCKEY EQ JOB-ID-0440 OF REQUEST
 IF JOB-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN JOB-EMPOSITION

 SELECT USING INDEX JOB-TITLE-NDX
 FOR FIELDNAME TITLE-0440
 OBTAIN EACH JOB USING INDEX
 IF JOB-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN JOB-EMPOSITION
 SELECT FOR FIELDNAME START-DATE-0420
 OBTAIN EACH EMPOSITION WITHIN EMP-DEMO-REGION
 IF JOB-EMPOSITION MEMBER
 OBTAIN OWNER WITHIN JOB-EMPOSITION
 SELECT FOR ELEMENT JOB
 OBTAIN EACH JOB WITHIN ORG-DEMO-REGION
 IF JOB-EMPOSITION IS NOT EMPTY
 OBTAIN EACH EMPOSITION WITHIN JOB-EMPOSITION
 SELECT FOR ELEMENT EMPOSITION
 OBTAIN EACH EMPOSITION WITHIN EMP-DEMO-REGION
 IF JOB-EMPOSITION MEMBER
 OBTAIN OWNER WITHIN JOB-EMPOSITION
 SELECT
 OBTAIN EACH JOB WITHIN ORG-DEMO-REGION
 ON 0307 CLEAR RETURN LR-NOT-FOUND
 ON 0000 NEXT
 IF JOB-EMPOSITION IS NOT EMPTY
 ON 0000 ITERATE
 ON 1601 NEXT
 OBTAIN EACH EMPOSITION WITHIN JOB-EMPOSITION
 ON 0000 NEXT
 ON 0307 ITERATE.
GENERATE.
5-60 iWay Software

Getting Started in CA-IDMS
CA-IDMS Master File for LRF
FILE=EMPDATA,SUFFIX=IDMSR,$
SEGNAME=DEPTEMPO,$
 FIELD=DEPT_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELD=DEPT_NAME ,ALIAS= ,USAGE=A45 ,ACTUAL=A45 ,$
 FIELD=DEPT_HEAD ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELD= ,ALIAS=FILL.END,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=EMP_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 GROUP=EMP_NAME ,ALIAS= ,USAGE=A25 ,ACTUAL=A25 ,$
 FIELD=FIRST_NAME,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=LAST_NAME ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=EMP_STREET ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELD=EMP_CITY ,ALIAS= ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=EMP_STATE ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 GROUP=EMP_FULL_ZIP,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELD=EMP_ZIP ,ALIAS= ,USAGE=A5 ,ACTUAL=A5 ,$
 FIELD=EMP_ZIP_L ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELD=EMP_PHONE ,ALIAS= ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=STATUS ,ALIAS= ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=SOC_SEC_NUM ,ALIAS= ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELD=EMP_STRT_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELD=EMP_TERM_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELD=EMP_BRTH_DTE,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELD= ,ALIAS=FILL.END,USAGE=A6 ,ACTUAL=A6 ,$
 FIELD=POS_STRT_DT1,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELD=POS_FIN_DT1 ,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELD=SALARY_GRAD1,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELD=SALARY_AMT1 ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELD=BONUS_PCT1 ,ALIAS= ,USAGE=P4 ,ACTUAL=P2 ,$
 FIELD=COMMIS_PCT1 ,ALIAS= ,USAGE=P4 ,ACTUAL=P2 ,$
 FIELD=OVERTIM_PCT1,ALIAS= ,USAGE=P5.2 ,ACTUAL=P2 ,$
iWay Data Adapter Administration for MVS and VM 5-61

CA-IDMS Sample File Descriptions
SEGNAME=JOBPOS,PARENT=DEPTEMPO,SEGTYPE=U,$
 FIELD=JOB_ID ,ALIAS= ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELD=TITLE ,ALIAS= ,USAGE=A20 ,ACTUAL=A20 ,$
 FIELD=JOB_DESC ,ALIAS= ,USAGE=A120 ,ACTUAL=A120 ,$
 FIELD=REQUIREMENTS,ALIAS= ,USAGE=A120 ,ACTUAL=A120 ,$
 FIELD=MIN_SALARY ,ALIAS= ,USAGE=P12.2,ACTUAL=Z8 ,$
 FIELD=MAX_SALARY ,ALIAS= ,USAGE=P12.2,ACTUAL=Z8 ,$
 FIELD=SAL_GRADE_1 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELD=SAL_GRADE_2 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELD=SAL_GRADE_3 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELD=SAL_GRADE_4 ,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELD=POSITION_NUM,ALIAS= ,USAGE=P4 ,ACTUAL=Z3 ,$
 FIELD=NUM_OPEN ,ALIAS= ,USAGE=P4 ,ACTUAL=Z3 ,$
 FIELD= ,ALIAS=FILL.END,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=POS_STRT_DT2,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELD=POS_FIN_DT2 ,ALIAS= ,USAGE=A6YMD,ACTUAL=A6 ,$
 FIELD=SALARY_GRAD2,ALIAS= ,USAGE=P4 ,ACTUAL=Z2 ,$
 FIELD=SALARY_AMT2 ,ALIAS= ,USAGE=P10.2,ACTUAL=P5 ,$
 FIELD=BONUS_PCT2 ,ALIAS= ,USAGE=P4 ,ACTUAL=P2 ,$
 FIELD=COMMIS_PCT2 ,ALIAS= ,USAGE=P4 ,ACTUAL=P2 ,$
 FIELD=OVERTIM_PCT2,ALIAS= ,USAGE=P5.2 ,ACTUAL=P2 ,$

CA-IDMS Access File for LRF
This Access File is associated with LRF subschema EMPSS02 and corresponds to its Master
File.

SSCHEMA=EMPSS02,RELEASE=12,MODE=LR,TRACE=PARMS,READY=ALL,$
SEGNAM=DEPTEMPO,RECORD=DEPT-EMP-POS,AREA=EMP-DEMO-REGION,LR=Y,$
SEGNAM=JOBPOS,RECORD=JOB-EMPOSITION,AREA=ORG-DEMO-REGION,LR=Y,
 ACCESS=LR,KEYFLD=POS_STRT_DT1,IXFLD=POS_STRT_DT2,$

Sample of a Partial LRF Record in CA-IDMS
The following is an example of a NULL SELECT clause that creates a partial record by
returning a user-defined record code. The data adapter does not support this user-defined
code or any status code other than LR-FOUND or LR-NOT-FOUND.

SELECT
 OBTAIN EACH JOB WITHIN ORG-DEMO-REGION
 IF JOB-EMPOSITION IS NOT EMPTY
 ON 0000 RETURN NO-POS-FOR-JOB
 OBTAIN EACH EMPOSITION WITHIN JOB-EMPOSITION.
5-62 iWay Software

Getting Started in CA-IDMS
SPF Indexes in CA-IDMS
The following is a section of a subschema that contains SPF indexes. Comparable
Integrated Indexes are found in the LRF subschema EMPSS02 listed as EMP-NAME-NDX,
JOB-TITLE-NDX, and SKILL-NAME-NDX.

ADD SET NAME IS IX-EMP-LNAME
 ORDER IS SORTED
 MODE IS CHAIN
 OWNER IS IXOWNER
 NEXT DBKEY POSITION IS AUTO
 MEMBER IS EMPLOYEE
 NEXT DBKEY POSITION IS AUTO
 OPTIONAL MANUAL
 ASCENDING KEY IS (EMP-LAST-NAME-0415)
 DUPLICATES LAST
.

ADD SET NAME IS IX-TITLE
 ORDER IS SORTED
 MODE IS CHAIN
 OWNER IS IXOWNER
 NEXT DBKEY POSITION IS AUTO
 MEMBER IS JOB
 NEXT DBKEY POSITION IS AUTO
 OPTIONAL MANUAL
 DESCENDING KEY IS (TITLE-0440)
 DUPLICATES NOT ALLOWED
.

ADD SET NAME IS IX-SKILL-NAME
 ORDER IS SORTED
 MODE IS CHAIN
 OWNER IS IXOWNER
 NEXT DBKEY POSITION IS AUTO
 MEMBER IS SKILL
 NEXT DBKEY POSITION IS AUTO
 OPTIONAL MANUAL
 ASCENDING KEY IS (SKILL-NAME-0455)
 DUPLICATES NOT ALLOWED
 .
iWay Data Adapter Administration for MVS and VM 5-63

CA-IDMS Access Control
CA-IDMS Access Control
The following topics describe CA-IDMS access control.

• File retrieval

• Record retrieval

In any computer system, it is important that data be secured from unauthorized access.
Both IDMS and the server provide security mechanisms to ensure that users have access to
only those objects for which they have authorization.

CA-IDMS File Retrieval
These topics explain how the server uses the Master File to select segments and retrieve
data from them.

Note: Topics pertaining to unique segments discuss rules that apply regardless of whether
the unique segment is the owner of its parent or related to it through a CALC field, index, or
LRF field.

CA-IDMS Retrieval Subtree
To retrieve records for a request, the server first constructs a smaller subtree structure from
the structure defined by the Master File. The subtree consists of segments that contain
fields named explicitly in the request and those named implicitly by DBA DEFINE or
COMPUTE statements. The subtree also includes any segments needed to connect these
segments.
5-64 iWay Software

Getting Started in CA-IDMS
For example, if an SQL request needs fields from segments D, G, and I, the server constructs
the subtree shown below. Segments C and B do not contain fields needed for the request,
but they are included in the subtree to connect segment I with segments D and G. Since the
segments are descendants of segment B, the entry or root segment of the subtree is
segment B. The Master File root segment A is not included, because its fields are not
referenced; the records corresponding to segment B can be obtained independently of A.
However, if segment B were an OCCURS segment, the IDMS calls would be issued for
segment A to obtain B’s information.

Retrieval Sequence With Unique Segments in CA-IDMS
The retrieval sequence for subtrees containing unique segments is still top to bottom, left
to right, but the unique segments are treated as extensions of their parents. Records in a
unique segment correspond one-to-one with the records in a parent; records in a non-
unique segment have a one-to-many correspondence. In cases where the parent segment
has unique and non-unique descendants, the unique descendants are always retrieved first
regardless of the left-to-right order.

A retrieval view shows which sort and WHERE clauses are valid. For sort statements (BY or
ACROSS), the segment containing the sortfield must lie on the same path as the segments
with all requested fields. That is, the segment with the BY or ACROSS field must be an
ancestor or descendant of the segments containing the required fields.

A

B

G C F

I D E

B

G C

I D

Master File Subtree
iWay Data Adapter Administration for MVS and VM 5-65

CA-IDMS Access Control
For instance, panel 1 of the following graphic shows two descendant segments. The
statement SELECT B ORDER BY C is invalid, because the segments containing fields B and C
do not lie on the same path. However, if the segment containing B is a unique segment, the
two segments do lie on the same path. Panel 2 shows the retrieval view and the statement
SELECT B ORDER BY C is valid.

The retrieval sequence for unique segments may also affect the results of an SQL statement
that contains COUNT or SUM. If a segment is the parent of a unique descendant, there is a
one-to-one relationship. A COUNT statement like COUNT A AND B returns identical results
for each field, because the same record A is counted several times for each record B. If the
parent/descendant relationship is reversed with a non-unique parent, the result for field A
is a greater number than the result for field B.

The Effects of Screening Conditions in CA-IDMS
If a record in a segment fails a WHERE condition, the server does not retrieve the
corresponding records in descendant segments. Suppose this request is entered against
the structure EMPSS01 (corresponding Master File is EMPFULL).

SELECT EMP_ID,OFF_CODE
FROM EMPFULL
WHERE DEPT_NAME = 'PERSONNEL'
ORDER BY OFF_CODE

Every time a record in segment DEPT has a value in the DEPT_NAME field not equal to
PERSONNEL, the server ignores the corresponding records in descendant segments
EMPLOYEE and OFFICE, and retrieves the next record in segment DEPT. In addition, when a
WHERE clause on a lower segment fails, the row is removed from the server answer set.

A

B C

A

B

C

S E G X

S E G V
U

S E G Z
S

S E G Z
S

S E G X

S E G V
U

(1) (2)
5-66 iWay Software

Getting Started in CA-IDMS
To increase I/O efficiency, place the WHERE clauses at a higher level in the file structure. This
restricts the number of records the server has to test. The example below shows the
benefits of two WHERE clauses versus one.

Assume a subtree has four segments:

• DEPT contains department IDs and information.

• EMPLOYEE contains employee names and IDs.

• EMPOSIT contains the positions that the employee has held.

• JOB contains a list of jobs offered by the company.

To list all employees who are programmer/analysts:

SELECT TITLE,DEPT,LAST_NAME,FIRST_NAME
FROM EMPFULL
WHERE TITLE = 'PROGRAMMER/ANALYST'
ORDER BY DEPT,LAST_NAME,FIRST_NAME

For this request with only one WHERE clause, the server retrieves each DEPT record, each
EMPLOYEE record for a given DEPT, each EMPOSIT record for a given EMPLOYEE record, and
the JOB record connected to each EMPOSIT. After retrieval, the server determines whether
to include in the answer set the record from the value of the TITLE field. To make retrieval
more efficient, add another WHERE clause on a segment higher in the structure. In this
company, only the Internal Software department has programmer/analysts working for it:

SELECT TITLE,DEPT,LAST_NAME,FIRST_NAME
FROM EMPFULL
WHERE DEPT_NAME = 'INTERNAL SOFTWARE'
WHERE TITLE = 'PROGRAMMER/ANALYST'

Now the server retrieves and tests records only when the DEPT_NAME field equals the
value INTERNAL SOFTWARE.
iWay Data Adapter Administration for MVS and VM 5-67

CA-IDMS Access Control
Screening Conditions With Unique Segments in CA-IDMS
If a record in a unique segment fails a WHERE test, the server rejects its parent and retrieves
the next record of the parent segment. For example in the following graphic, if a record in
non-unique segment C fails a WHERE clause, the server retrieves the next record in segment
C. Only if all C records for a given A fail the test is the A record rejected. When a record in
unique segment D fails a test, the server rejects the parent B record and retrieves the next
record in segment B. When a record in the entry A segment fails a test, the server retrieves
the next A record, even if the entry segment is defined as unique.

Short Paths in CA-IDMS
When the server retrieves a record in a parent segment, it retrieves the corresponding
records in the descendant segment. If descendant records do not exist, the processing of
the parent record and whether it is included in an answer set depends on whether the
descendant segment is unique or non-unique.

Short Paths in Unique Descendants in CA-IDMS
For a unique descendant with a missing record, the server creates a temporary record to
replace the missing record. The temporary record contains fields with default values: blanks
for alphanumeric fields and zeroes for numeric fields.

For example, an EMPLOYEE segment with the field EMP_NAME has a unique descendant
OFFICE segment with the field OFF_CITY. The field OFF_CITY indicates the location of an
employee’s office. Gary Smith does not work out of an office location; so, he has no OFFICE
record. In this situation, all requests that refer to OFF_CITY display blank spaces for the
entry GARY SMITH.

SEGA
U

SEGB
S

SEGD
U

SEGC
S

5-68 iWay Software

Getting Started in CA-IDMS
Short Paths in Non-Unique Descendants in CA-IDMS
For a non-unique descendant segment with a missing record, the server rejects the parent
instance and retrieves the next parent instance.

CA-IDMS Record Retrieval
To obtain all of the necessary records to fulfill a request, the data adapter navigates the
IDMS database using DML or LRF commands. The data adapter automatically generates
DML or LRF commands based on information from the Master File, Access File, and your
request for the most appropriate and efficient IDMS retrieval method.

There are three kinds of IDMS access:

• Entry segment retrieval for network (DML) records.

• Descendant segment retrieval for DML records.

• LRF record (LR and ASF) retrieval.

Subsequent topics discuss the navigational strategies used for each kind of access.

Entry Segment Retrieval of Network Records in CA-IDMS
The server constructs a retrieval subtree based on the Master and Access Files and your
request. The root of this subtree is called the entry segment, because the server begins its
retrieval search of the database at that point. The actual IDMS retrieval calls used on the
entry segment depend on the entry segment’s Access File information and any WHERE
clauses. To perform the most efficient record retrieval on the entry segment, the data
adapter chooses one of the following techniques:

1. Retrieval by the IDMS database key (DBKEY).

2. Retrieval by the CALC field.

3. Retrieval by an index (fully-qualified, generic, or range).

4. Retrieval by area sweep.

These techniques are listed in descending order of efficiency. The idea behind selection
logic is to perform as many WHERE clauses as possible at the IDMS level. This minimizes the
actual I/O operations required to access the necessary data. Area sweeps are the least
desirable, because they read through every record type in the named area, including record
types that correspond to other segments, and return every entry segment record to the
server. At this point, the server selects those records that satisfy the request’s test criteria
and discards the rest.
iWay Data Adapter Administration for MVS and VM 5-69

CA-IDMS Access Control
Retrieval by IDMS Database Key
The IDMS database key method of retrieval takes precedence over the other alternatives,
because it is the most efficient. This method depends on the existence of two conditions:

• A field that corresponds to the IDMS database key (ALIAS=DBKEY) for the entry
segment.

• An equality test in the request on the DBKEY field.

The equality test sets the field name of the DBKEY from the entry segment in the Master File
equal to a specified numeric value(s):

WHERE field = 'value1'

Retrieval by CALC Field in CA-IDMS
If there is no WHERE clause on the DBKEY for the entry segment, the second choice is CALC
access. Retrieval through the CALC key, while not as efficient as DBKEY access, takes
precedence over an index or area sweep retrieval.

The CALC retrieval method depends on the existence of two conditions:

• The entry segment must contain a CALC key field as specified in the Access File.

• A fully-qualified equality test in the request on the CALC field.

The WHERE clause sets the field name of the CALC key for the segment equal to fully
qualified values:

WHERE field = 'value1'

For each value specified in the WHERE clause, the data adapter calls IDMS with the
following DML command:

OBTAIN CALC record

If the Access File indicates duplicate records (CLCDUP=Y), each DML call is followed by
subsequent calls:

OBTAIN DUPLICATE record

This ensures that all appropriate records are obtained to satisfy the request.
5-70 iWay Software

Getting Started in CA-IDMS
Retrieval by IDMS Index
If there is no DBKEY or CALC key test criteria in the request, the data adapter selects the
index retrieval method.

Note: An index field must be defined with the FIELDTYPE=I attribute in the Master File and
a corresponding index declaration must exist in the Access File. See Describing CA-IDMS
Data Sources on page 5-18 for details on how to describe IDMS indices.

Index retrieval is performed using:

• WHERE clauses for an indexed field or GROUP in the entry segment.

• The optional parameter SEQFIELD in the Access File segment declaration.

The first way requires at least one WHERE clause that specifies the field name of the index
field. The following WHERE invokes index-based retrieval:

• Fully-qualified.

WHERE = 'PROGRAMMER/ANALYST'

• Partially-qualified (generic); also called masking. This applies to alphanumeric fields
only.

WHERE TITLE LIKE 'PROGRAMMER%'

• Specified as a range of values.

WHERE TITLE BETWEEN 'PROGRAMMER' AND 'WORD PROCESSOR'

When two or more WHERE clauses in a request qualify an index on the entry-level segment,
fully-qualified retrieval takes precedence over generic; generic over range. If two WHERE
clauses are the same type, the index in the first WHERE clause is used. All types of WHERE
clauses are also supported for indices that allow duplicate values.
iWay Data Adapter Administration for MVS and VM 5-71

CA-IDMS Access Control
If the test criteria indicates index retrieval, the data adapter issues this DML command to
IDMS:

OBTAIN FIRST record WITHIN setname USING value

In this command, setname is the name of the index set specified in the Access File.

Then, if the Access File indicates duplicate records, the data adapter issues this DML
command for index sets:

OBTAIN NEXT record WITHIN setname

The above OBTAIN NEXT call is issued until all the duplicate records are retrieved. This same
NEXT call is also issued if your request contains generic or range WHERE clauses. It is
performed once for every value or range specified in the WHERE clause.

Note: If the IXORD parameter is improperly specified in the Access File, a range WHERE
clause may erroneously produce an answer set with one or no records.

SEQFIELD Parameter in CA-IDMS
The second method of index retrieval does not require WHERE clauses and yet prohibits
area sweeps on entry segments. To use this method, add the optional SEQFIELD parameter
to the Access File and specify the name of the indexed field as the value of SEQFIELD.

When your request does not contain a WHERE (for DBKEY, CALC key, or another index) and a
SEQFIELD is specified for the entry segment, the data adapter issues this DML command to
IDMS:

OBTAIN FIRST record WITHIN setname

In this command, setname is the IDMS set name of the indexed field (IXSET parameter) from
the Access File.

Then, the data adapter issues the next command until all records connected to the index
set are retrieved:

OBTAIN NEXT record WITHIN setname

If no sort criteria (ORDER BY) is specified in the request, the answer set is produced in
ascending or descending index set order.

The SEQFIELD method is recommended for indexed segments in large IDMS databases
where only a small percentage of record occurrences in a given area are the record types
defined by the segments. In such cases, IDMS resource utilization can be greatly reduced
through the use of this parameter.

Note: If the index set connection is not mandatory/automatic (MA), some of the records in
this record type may not be accessed if it is the entry segment. In this situation, only records
that are members of the index set are supplied to the server. If this retrieval result is
undesirable, you should omit the SEQFIELD parameter.
5-72 iWay Software

Getting Started in CA-IDMS
Retrieval by Area Sweep in CA-IDMS
An area sweep is the least efficient method of entry-level retrieval, because it reads through
every record in an IDMS area to return records of a given record type. Despite its
inefficiency, an area sweep is sometimes the only method available for retrieval.

The data adapter performs an area sweep if one of the following occurs:

• No equality WHERE on the DBKEY for the root exists.

• No equality WHERE on the CALC key for the root exists.

• No equality or range WHERE on an indexed field exists.

• No SEQFIELD parameter is specified.

If one of the above situations occurs, the data adapter issues this DML command to IDMS:

OBTAIN FIRST record WITHIN areaname

In this command, areaname is the name of the IDMS database area specified in the Access
File. Next, the data adapter continues to issue:

OBTAIN NEXT record WITHIN areaname

until all the records are obtained.

CA-IDMS Descendant Segment Retrieval of Network Records
To retrieve records from a descendant segment, the data adapter’s navigational strategy
depends on Access File parameters and the SEGTYPE parameter in the Master File. In a few
cases, the WHERE clauses in a request also affect the strategy.

In general, the ACCESS parameter in the Access File determines retrieval strategy, because it
indicates how parent/descendant relationships are implemented. There is a retrieval
strategy for each kind of relationship:

• Set-based retrieval

• CALC-based retrieval

• Index-based retrieval

These strategies are described in the following topics:

• CA-IDMS Set-Based Retrieval

• CALC-Based Retrieval in CA-IDMS

• Index-Based Retrieval in CA-IDMS

• IRF Record Retrieval in CA-IDMS
iWay Data Adapter Administration for MVS and VM 5-73

CA-IDMS Access Control
CA-IDMS Set-Based Retrieval
For a set relationship (ACCESS=SET), the IDMS set is searched starting with the owner to
obtain related member record(s). Set relationships are physical ones, implemented by set
pointer chains. The SEGTYPE parameter in the Master File indicates whether the
descendant segment is unique or non-unique.

If the descendant segment is non-unique (SEGTYPE=S), it represents a member record type.
For non-unique descendants, the data adapter issues this command:

OBTAIN NEXT record WITHIN setname

This command is repeated until IDMS indicates that the end of the set is reached. Then the
data adapter obtains records of other descendant segments for the same parent segment
or, if no other descendants exist, the next parent record is retrieved.

If the descendant segment is unique (SEGTYPE=U), it represents an owner record type. For
unique descendants, the data adapter issues this command:

OBTAIN OWNER WITHIN setname

This command is issued once, since there is one owner per set. The data adapter continues
to retrieve descendant records for the same parent or retrieves the next parent record.

The KEYFLD and MULTMBR parameters in the Access File also affect retrieval for certain
requests. For a sorted set, the KEYFLD parameter specifies that the set is ordered by a
specified field. When the request references a field from the parent segment and has a
WHERE (=, BETWEEN, >, >=, <, <=) on the sortfield, the data adapter sends this command to
IDMS:

OBTAIN record WITHIN setname USING value

If there are duplicate records (SETDUP=Y), then the data adapter issues this command:

OBTAIN NEXT record WITHIN setname

When the value of the sortfield changes beyond the specified range, retrieval for that
segment stops. I/O operations are minimized when the sortfield value is supplied in the
OBTAIN command.

Note: The means of implementing the sorted set—using the traditional method, or using
IDMS-Integrated Indices—is transparent to the data adapter.

The MULTMBR parameter indicates an IDMS multi-member set. When it is specified, the
data adapter searches for other member record types (segments) in the Access File with the
same setname. As a result, all necessary IDMS areas are activated.
5-74 iWay Software

Getting Started in CA-IDMS
CALC-Based Retrieval in CA-IDMS
CALC-based relationships (ACCESS=CLC) are performed with embedded cross-references: A
field in the parent segment corresponds to the CALC field in its descendant. The data
adapter uses the value from the parent’s field and performs entry-level IDMS retrieval. The
process of retrieving records from a descendant segment is similar to that of an entry
segment. The difference is that the value supplied by the parent segment acts as the
WHERE clause as if it were an explicit WHERE.

After the data adapter retrieves the host field value (KEYFLD=value) from the parent
segment, it calls IDMS:

OBTAIN CALC record

Then, if the descendant segment is non-unique (SEGTYPE=S), the data adapter issues:

OBTAIN DUPLICATE record

until all of the appropriate records are obtained to satisfy the request.

Note: If the CLCDUP parameter does not correspond to the SEGTYPE parameter,
messageEDA919 displays.

A descendant segment with a CALC-based relationship (ACCESS=CLC) may act as a parent
and be related to its descendants using set-, CALC-, or index-based relationships.
iWay Data Adapter Administration for MVS and VM 5-75

CA-IDMS Access Control
Index-Based Retrieval in CA-IDMS
Like CALC-based relationships, index-based relationships (ACCESS=IX) also use embedded
cross-references. In index-based relationships, the field in a descendant segment
represents an index on the IDMS record type. The index can be either a Sequential
Processing Facility (SPF) index or an Integrated Index. The data adapter uses the value from
the parent segment and performs entry-level IDMS retrieval by searching the index set. The
process of retrieving records from a descendant segment is similar to that of an entry
segment. The difference is that the value supplied by the parent segment acts as the
WHERE clause as if it were an explicit WHERE.

After the data adapter retrieves the host field value (KEYFLD=value) from the parent
segment, it calls IDMS:

OBTAIN FIRST record WITHIN setname USING value

Then, if the descendant segment is non-unique (SEGTYPE=S), the data adapter issues:

OBTAIN NEXT record WITHIN setname

until all indexed records with the host value are retrieved.

Note: If the IXDUP parameter does not correspond to the SEGTYPE parameter, message
EDA919 displays.

Only a descendant segment with an Integrated Index may act as a parent and be related to
its descendants using set-, CALC-, or index-based relationships.

LRF Record Retrieval in CA-IDMS
To retrieve LR and ASF records, the data adapter sends LRF calls to an access module IDMS
which invokes Logical Record Facility program.

LRF-based records are retrieved when the Access File specifies MODE=LR in the subschema
declaration and the data adapter constructs an LR call to IDMS with explicit or implicit
WHERE clauses from the request. The LRF processes the request as generated by the data
adapter, selects the appropriate LR path, and constructs each flat view using the full set of
WHERE clauses. The process is highly efficient in terms of I/O; only those records which pass
the WHERE clause are passed back to the data adapter from IDMS.

The retrieval process for LRF records is identical to that of network record types, but the
Logical Record Facility maintains its own navigational information for the database, selects
the retrieval strategy most appropriate for a given request, and maintains its own set of
occurrences.
5-76 iWay Software

Getting Started in CA-IDMS
When the subschema mode is Logical Record (MODE=LR), the data adapter analyzes the
request and creates an LRF command to be sent to the Logical Record Facility. The LRF
command has two formats. The first format is for an entry segment without WHERE clauses:

OBTAIN NEXT record

The second format is for an entry with WHERE clauses or for a descendant segment:

OBTAIN NEXT record WHERE expression1 [AND expressionN]

As indicated by the brackets, this command is also used to pass compound WHERE clauses
to IDMS.

IDMS processes the data adapter’s call and returns a record if two conditions are met:

• There is a SELECT path in the LR path-group that can process the particular request.
(For entry segments without WHERE clauses, there must be a null SELECT clause
defined for the logical record.) If there is no available SELECT path, IDMS returns
message 2041, and the data adapter terminates its processing with an EDA949
message.

• There is a complete LRF record created by the path-group logic. If the selected path-
group can return partial records, the data adapter processes returned records until the
first partial record is returned and the LR status field is not LR-FOUND or LR-NOT-
FOUND. When the data adapter encounters any other status in the LR status field, it
aborts the record retrieval process and returns messages EDA967 and EDA949. Logical
records that allow for retrieval of partial records should not be used with the data
adapter.

The data adapter continues to call IDMS for LRF records that correspond to a segment until
IDMS returns LR-NOT-FOUND in the LR status field. Then the data adapter retrieves records
for other segments, or it terminates retrieval and the answer set is produced.

See Describing CA-IDMS Data Sources on page 5-18 for examples of SELECT clauses
including one for a partial record.
iWay Data Adapter Administration for MVS and VM 5-77

CA-IDMS Access Control
Creating File Descriptions With AUTOIDMS in CA-IDMS
The AUTOIDMS facility creates Master and Access Files for IDMS network and LRF records
automatically, based on information stored in the IDMS Integrated Data Dictionary and user
selections.

Available disk space is required for the facility to write the new file descriptions (and
parameter log file, if applicable) to the data sets specified on the initial input screen. In
addition, sufficient disk space must be available for temporary work files created. The
amount of temporary space depends on the size of the subschema being described.

The Master Files IDMSIDD and AUTOIDMS must be members in the sequence of data sets
allocated to the ddname MASTER. The Access File IDMSIDD must be a member in the
sequence of data sets allocated to the ddname ACCESS. The AUTOIDMS procedure must be
a member in the sequence of data sets allocated to the ddname FOCEXEC. These members
should be located in your site’s production server libraries as a result of the data adapter
installation process.

Before you begin, you should decide which record types are appropriate for your Master
File. Consider which record should be the root segment and which record/set relationships
will be included as descendants. A review of the Bachman diagram for the subschema will
assist in these decisions. Since you can create several Master Files in the same AUTOIDMS
session, with only one pass through the IDMS dictionary, you may want to prepare several
views of the subschema before proceeding.

Syntax How to Write Access Files to the Data Set Allocated to ACCESS

AUTOIDMS writes the Access File to the data set allocated to ACCESS. This allocation, and
any other IDMS allocations, such as SYSIDMS, should be added to the clist

qualif.EDACTL.DATA(EDAAUTO)

where:

qualif

Is the high-level qualifier for your server data sets.
5-78 iWay Software

Getting Started in CA-IDMS
Procedure How to Start AUTOIDMS

1. To start AUTOIDMS, run the clist

qualif.EDACTL.DATA(EDAAUTO)

The following input screen appears:

2. Choose IDMS from the menu that is displayed.

3. Press the ENTER key.

Instructions : Place cursor on the type of File
Description you wish
 to translate and then press ENTER. Use PF3 to Quit.

 DB2

 IDMS

 ADABAS

 DATACOM

 INFOMAN

 Cobol FD

 NOMAD
iWay Data Adapter Administration for MVS and VM 5-79

CA-IDMS Access Control
The following is an example of the initial AUTOIDMS screen. Subsequent user entries are in
lower case.

Main Menu Master File Generation Facility for IDMS/R
 Information Builders, Inc.

 IDMS Subschema Name to be Used =====> EMPSS01
 Master Filename ====================>
 DBName ====> EMPDEMO DictName ====> APPLDICT
 Secondary Dictionary=> ()

 Description will be a member of:
 Master Target PDS => USER1.MASTER.DATA
 Access Target PDS => USER1.ACCESS.DATA
 Replace Existing Description? ===> N (Y/N)
 Exclude Comments from MFD? ===> N (Y/N)
 Exclude Description from MFD? ===> N (Y/N)

 Field Information
 Use Record ID Suffix in Name? ===> Y (Y/N)
 Start with Element Name Position => 1 (1-32)
 for a Total Length of => 32 (1-32)
 Describe Numeric Displays as => N (N-Numeric,A-Alpha)
 Parm File => USER1.ACCESS.DATA

PF1=Help PF3=Exit PF4=Log PF5=TED MFD PF6=TED AFD PF9=Picture PF10=List
5-80 iWay Software

Getting Started in CA-IDMS
4. On the Main Menu, provide information about the subschema to be described, a name
to use in requests, and target data sets for the descriptions generated. The field
information parameters allow you to customize the field name attributes produced by
AUTOIDMS. Specify the following information on the AUTOIDMS Main Menu:

IDMS Subschema
Name

Enter the 1- to 8-character subschema name that you wish
to describe. The subschema must already exist in the Data
Dictionary.

Master Filename Enter the 1- to 8-character name that you will refer to the
data as in all requests. This name must be a valid member
name.

DBNAME Enter the 1- to 8-character DBNAME that is required in the
Access File to point to the database that contains the data
for the Master File being created. For example, a Master File
created for the EMPSS01 subschema will use the
EMPDEMO DBNAME.

DICTNAME Enter the 1- to 8-character DICTNAME that is required in
the Access File to point to the database that contains the
subschema for the Master File being created. For example,
a Master File created for the EMPSS01 subschema will use
the APPLDICT DICTNAME.

Secondary
Dictionary

If you are using multiple system IDDs, you will have a
choice of dictionaries from which to create Master and
Access Files. The default is blank for the primary dictionary.
If the SYSDIRL dictionary is defined in member IDMSIDDA,
enter (A) between the parentheses.

Master Target
PDS

Enter the fully-qualified data set name of the Master File
PDS where the Master File will be stored. Do not use
quotes in the data set name.

Access Target
PDS

Enter the fully-qualified data set name of the Access File
PDS where the Access File will be stored. Do not use quotes
in the data set name.

Replace Existing
Description?

(Y/N)
Enter N if you do not want to overwrite an existing Master
and Access File. Enter Y if you wish to replace a Master and
Access File that already exists on disk.
iWay Data Adapter Administration for MVS and VM 5-81

CA-IDMS Access Control
Exclude
Comments from
MFD?

(Y/N)
Enter Y to exclude commented entries from the Master File.
AUTOIDMS will comment non-supported dictionary
entries such as re-defined elements, groups within groups,
and 88 level elements. Enter N to retain the commented
elements.

Exclude
Description from
MFD?

(Y/N)
Enter Y to exclude the $DESC= entry from the Master File.
Enter N to include the description (excluding comments
will also exclude the description).

Use Record ID
Suffix in Name?

(Y/N)
Enter Y to use the record element synonym name as the
FIELDNAME (using SYN-NAM-083 from the dictionary).
Enter N to use the primary element name as the
FIELDNAME (using DR-NAM-042). The synonym name
contains the schema record ID as a suffix (for example,
STATUS-0415); the primary name does not (for example,
STATUS). Excluding the record ID suffix may cause
duplicate names when more than one record is described.

Start with
Element Name
Position (1-32)

Enter the starting position of the element name to be used
as the first character in the FIELDNAME. By increasing the
starting position, you may strip off common prefixes from
the element name.

For a Total
Length of (1-32)

Enter the number of characters of the element name to be
used in the FIELDNAME. Entering 32, for example, will use
the entire element name (when the starting position is 1).
When the starting position is greater than 1, the
FIELDNAME length will be the smaller of the total length
provided on the main menu or the remaining length of the
element name. Note that using a length less than 32 may
cause truncation of the FIELDNAME and duplicate
FIELDNAMEs in the resulting Master File.

Describe Numeric
Displays as
(N-NUMERIC,
A-ALPHA)

Enter N to have elements with an IDMS DISPLAY of PIC 9(n)
to be described as numeric values with USAGE=In in the
Master File. Enter A to have elements with an IDMS
DISPLAY of PIC 9(n) to be described as alphanumeric values
with USAGE=An in the Master File.
5-82 iWay Software

Getting Started in CA-IDMS
If you intend to use COBOL numeric displays for summing or mathematical equations, use
the Numeric option. If you intend to use these elements for display only, use the
Alphanumeric option. If these elements are part of a GROUP field, you may want to use the
Alphanumeric option so that the GROUP field will be described for easy access in the
Master File.

Reference PF Functions

The following functions are available from the main menu using the PFkeys:

Help (PF1)

Press PF1 to display an extensive online help facility. Much of the text of this document is
available using this function.

Exit (PF3)

Press PF3 to exit AUTOIDMS.

Logging Default Menu Parameters (PF4)

Press PF4 to save your customized default values for the Main Menu to disk. These will be
saved in member IDMS$PRM in the parm data set shown on the menu. This data set will be:

• The PDS pre-allocated to ddname IDMS$PRM.

qualif.ACCESS.DATA

or

• The first data set allocated to ddname ACCESS.
iWay Data Adapter Administration for MVS and VM 5-83

CA-IDMS Access Control
Parameter logging assumes that the user has write access to the target data set. An attempt
to log parameters to a data set without write access will result in a security abend. The
following information will be logged:

• IDMS subschema name

• DBNAME

• DICTNAME

• Secondary dictionary

• Master File partitioned data set name

• AFD Partitioned data set name

• Replace existing description

• Exclude Comments from Master File

• Exclude Description from Master File

• Use record ID suffix

• Starting field name position

• Total field name length

• Describe numeric displays

Note that all validations must pass before the default values are logged.

TED MFD (PF5)/TED AFD (PF6)

Press PF5 or PF6 to edit (using TED) the Master or Access File, respectively, entered in
MASTER FILENAME. This will select the member in the data set named in either MASTER
TARGET PDS or ACCESS TARGET PDS.

Note: These files did not have to be created with AUTOIDMS to edit them.

Picture of Master File (PF9)

Press PF9 to generate a diagram of the structure of the file entered in MASTER FILENAME.
After the picture is displayed, type in any character and press the ENTER key. The master
name must be a member of a data set allocated to ddname MASTER to generate the picture
(the MASTER TARGET PDS is not used).
5-84 iWay Software

Getting Started in CA-IDMS
Subschema List (PF10)

Leave the subschema name blank and press PF10 to display a list of all subschemas
described in the IDMS Data Dictionary. A subset of the list can be generated by entering a
partial name with wild card characters. An underscore (_) may be used as a mask to select
any character in the position used. The percent sign (%) may be used as a mask to select any
sequence of zero or more characters.

Note: All validations must pass for these PFkey options.

Enter the appropriate values on the initial screen, and press the ENTER key. AUTOIDMS will
inform you that it is accessing the IDMS Integrated Data Dictionary by issuing the following
message:

==
** AUTOIDMS is retrieving information from IDD **
** Please wait... **
==

This message is only displayed during the first retrieval per AUTOIDMS session, or when the
subschema criteria has changed since the previous retrieval (within the session).
AUTOIDMS will not access the dictionary a second time for the same immediate subschema
in a single session.
iWay Data Adapter Administration for MVS and VM 5-85

CA-IDMS Access Control
When subschema information retrieval has been completed, the Root Record Selection
Screen will be displayed. The following example is for the EMPSS01 subschema.
Subsequent user entries are in lower case.

Reference Root Record Selection Screen

The Root Record Selection Screen is used to choose the first record of the selected
subschema to be described.

Type an X at the record desired and press ENTER to select the root. It is recommended that
the root record type have a set relationship with a CALC or index field. Record types with
logical (CALC or index-based) relationships require special attention.

Once the root is selected, the Record/Set Selection screen will be displayed for set based
records that participate in a set. For records that are not part of a set, or for LRF records, the
description will be generated and the Main Menu will be displayed again.

The Root Record Selection Screen displays the following information:

Subschema

Is the subschema name provided on the Main Menu to be described.

Master

Is the Master File name provided on the Main Menu.

 Subschema:EMPSS01 Master File Generation Facility for IDMS
 Master :TESTIDMS ==Root Record Selection==

 Place an 'X' next to the record to be the root of the Master

 X Record Name Index Type Calc? ID
 - ----------- ---------- ---- ----
 COVERAGE NONE N 0400
 DENTAL-CLAIM NONE N 0405
 DEPARTMENT NONE Y 0410
 x EMPLOYEE INTEGRATED Y 0415
 EMPOSITION INTEGRATED N 0420
 EXPERTISE NONE N 0425
 HOSPITAL-CLAIM NONE N 0430
 INSURANCE-PLAN NONE Y 0435
 JOB INTEGRATED Y 0440
 NON-HOSP-CLAIM NONE N 0445
 OFFICE NONE Y 0450
 SKILL INTEGRATED Y 0455

PF1=Help PF3=End PF7=Up PF8=Down
5-86 iWay Software

Getting Started in CA-IDMS
X

Selects the record to be chosen as the root by placing an X in this column.

Record Name

Is the record name from the IDMS Data Dictionary. LRF records will have ,LR=Y
appended to the record name.

Index Type

Indicates the type of index on the record. Values are NONE (no index), SPF, INTEGRATED,
or blank (LRF records).

Calc?

Indicates whether a CALC field exists. Values are N (no), Y (yes), or blank (LRF records).

ID

Is the IDMS record ID. For LRF records, the value is LRF.

Reference Root Record Selection Screen Functions

The following functions are available from the Root Record Selection Screen using the PF
keys:

Help (PF1)

Press PF1 to display an extensive online help facility. Much of the text of this document is
available using this function.

Exit (PF3)

Press PF3 to exit the file description generator and return to the main menu.

Scroll Backward (PF7)/Scroll Forward (PF8)

Press PF7 to scroll the record list backward; press PF8 to scroll the record list forward.

When the root record has been selected, the Record/Set Selection Screen will be displayed.
Subsequent user entries are in lower case.
iWay Data Adapter Administration for MVS and VM 5-87

CA-IDMS Access Control
The Record/Set Selection Screen is used to choose the descendant of the record shown on
the top of the screen.

Type an X at all records desired and press ENTER. Press PF4 if none of the records/sets are to
be described.

In the sample above, the EMPLOYEE record type is the current record type; it’s segment
name is S0415_01. The relationship type for EMPLOYEE varies. For example, DEPARTMENT
acts as the owner of EMPLOYEE in the DEPT-EMPLOYEE set, while EXPERTISE acts as the
member in EMP-EXPERTISE set.

The record relationships will be described in top down, left to right order. Initially, this
screen will display the records and sets that the root record participates in. Then, it will
show the records/sets of the first selection of the previous screen. This continues until the
selected record does not participate in any other sets or the user selects no descendant
records (by pressing PF4). Then the records/sets of the second selection of the previous
screen are shown for selection. Once all possible descendant selections have been
exhausted, the description will be generated and the Main Menu is redisplayed.

 Subschema:EMPSS01 Master File Generation Facility for IDMS
 Master :TESTIDMS ==RECORD/SET SELECTION== Segments Left: 63

 Place an 'X' next to each record/set to be a child of SEGNAME:
 S0415_01
 Record: EMPLOYEE
 Parent: Set:

 Owner/ Own No
 X Record Name Set Name Member Ptr Occ
 - ----------- --------- ---------- ---
 x DEPARTMENT DEPT-EMPLOYEE O Y
 COVERAGE EMP-COVERAGE M Y
 EMPOSITION EMP-EMPOSITION M Y
 x EXPERTISE EMP-EXPERTISE M Y
 STRUCTURE MANAGES M Y
 x OFFICE OFFICE-EMPLOYEE O Y 1
 STRUCTURE REPORTS-TO M Y

PF1=Help PF2=Restart PF3=End PF4=None PF5=Picture PF7=Up PF8=Down
5-88 iWay Software

Getting Started in CA-IDMS
Reference Record/Set Selection Screen

The Record/Set Selection Screen displays the following information:

Subschema

Is the subschema name provided on the Main Menu to be described.

Master

Is the Master File name provided on the Main Menu.

Segments Left

Is the number of records (including OCCURS) segments that can still be described, up to
a maximum of 64 segments.

Segname

Is the segment name for the record displayed (generated by AUTOIDMS).

Record

Is the name of the record already described on a previous screen for which the records/
sets are being displayed.

Parent

Is the parent of the record shown. This is displayed to illustrate the top down order of
the selection process.

Set

Is the set name that relates the displayed record and its parent (blank for the root
segment).

X

Selects the record(s) to be descendant(s) by placing an x in this column.

Record Name

Is the record name related (using Set Name) to the record shown above.

Set Name

Is the set name that relates the record on this line with the record shown above. The set
shown above will NOT display in this list.

Owner/Member

Indicates whether the record on this line is the owner (O) or member (M) of this set.

Own Ptr

Is the owner pointer indicator. Y indicates that the member record has a pointer to the
owner of the set. Generally, do not select descendant sets where the Owner/Member
flag is O and the owner pointer is N unless the member record chain is short. (GET
OWNER calls are issued to retrieve these relationships and can adversely effect data
retrieval efficiency.)
iWay Data Adapter Administration for MVS and VM 5-89

CA-IDMS Access Control
No Occ

Is the number of OCCURS (repeating groups) described in this record.

Reference Record/Set Selection Screen Functions

The following functions are available from the Record/Set Selection Screen using the PF
keys:

Help (PF1)

Press PF1 to display an extensive online help facility. Much of the text of this document is
available using this function.

Restart (PF2)

Press PF2 to cancel all previous selections and restart the Master File generation process at
the Root Record Selection Screen.

Exit (PF3)

Press PF3 to exit the file description generator and return to the main menu.

No Record/Set Selections (PF4)

Press PF4 if you do not wish to describe any of the displayed records/sets as descendants of
the current record.

Creating a Picture of the Description (PF5)

Press PF5 at any time to generate a diagram of the structure of the file being described.
Note that the description is created on disk (and will remain there even if the program is
ended with PF3).

After the picture is displayed, type in any character and press the ENTER key. The target
Master PDS must be allocated to ddname MASTER to generate the picture. If a member
exists with the master name selected in a data set concatenated in front of the target data
set, the picture is generated from that member.

Scroll Backward (PF7)/Scroll Forward (PF8)

Press PF7 to scroll the record list backward; press PF8 to scroll the record list forward.

Generated Descriptions in CA-IDMS
The AUTOIDMS facility creates complete Master and Access Files for the subschema and
records selected by the user. The following describes the attributes and values assigned to
them by AUTOIDMS.
5-90 iWay Software

Getting Started in CA-IDMS
File and Segment Attributes in CA-IDMS
CA-IDMS file and segment attributes are:

FILE

Master File name specified on the Main Menu.

SEGNAME

For records described in the Master File, the segment name is composed of the letter S,
the four-digit record ID number, an underscore, and a two-digit sequence number to
ensure uniqueness (for example, S0415_01). For repeating groups within a record, the
segment name is composed of the letters OCC, the two-digit sequence number of the
parent segment, an underscore, and its own two-digit sequence number (for example,
OCC04_01).

SEGTYPE

For member segments, the value is S; for owner segments, the SEGTYPE is U. The
SEGTYPE for repeating groups is S.

PARENT

For dependant segments, this is the value of SEGNAME of the parent record.

OCCURS

For repeating groups only, this will contain either the fixed number of occurrences of
the repeating group or the name of the field that contains the number of variable
occurrences of the group.

POSITION

For repeating groups only, this entry identifies the position of the repeating values in
the parent record. If the repeating values are described as a GROUP, this value will be
the ALIAS of the group field. If the repeating group consists of only one field, this value
will be the letter S, the two-digit sequence number of the parent, the string _OCC, and
the two-digit sequence number of the occurs segment (for example, S04_OCC01). This
artificial name is used as the place holder in the parent record so that the field name
can be used in the occurs segment.
iWay Data Adapter Administration for MVS and VM 5-91

CA-IDMS Access Control
Field Attributes in CA-IDMS
CA-IDMS field attributes are:

FIELD

Identifies simple IDMS elements as fields.

GROUP

Identifies IDMS group elements that are composed of other contiguous fields. The
GROUP attribute is only used for groups at the highest level in the record description.

$GROUP

Identifies IDMS group elements that are themselves components of another group.
Since these are embedded groups, they cannot be referenced. However, you may
reference this field by uncommitting the entry (by removing the leading dollar sign)
and commenting the parent group (by adding a leading dollar sign).

$RDF

Identifies redefined IDMS elements. You may reference either the original fields or the
redefined fields. You may reference the redefined field by changing $ RDF= to FIELD=
and commenting the original field (by adding a leading dollar sign).

$88

Identifies conditional IDMS elements (COBOL level 88 fields). These entries are provided
in the Master File for documentation purposes only. The value of the conditional field is
contained in the USAGE attribute. If the conditional field is a range, the low end of the
range is in the USAGE attribute; the high end of the range is in the ACTUAL attribute.

$BIT

Identifies BIT fields. The first BIT field in a set is described with a FIELD= attribute and an
alphanumeric format. The length is the number of bytes occupied by all BIT fields in the
set. Subsequent BIT fields in the set are described as comments with the $ BIT=
attribute. To access the individual BIT fields, you may create DEFINE fields (within the
Master File) using the BITSON user-written subroutine, using the first field in the set as
input.

$DESC

Lists the full IDMS element name. If the field name is truncated as a result of user
selections, this also includes the string *TRUNC*.

$DUPLICATE

Identifies duplicate fields described in the Master File. It lists the full IDMS element
name, the number of duplicate occurrences, and the segments where the duplicate
fields are located. This attribute is found at the end of the Master File.
5-92 iWay Software

Getting Started in CA-IDMS
FIELDNAME

Field names are derived from the IDMS dictionary and may be truncated based on user
selections on the main menu. Hyphens in the IDMS name are converted to
underscores. Certain field names are generated by the AUTOIDMS facility. A field that is
generated to ensure full-word boundaries at the end of a record in an LRF is blank. A
calculated position field will have the format Smm_OCCnn (see POSITION=). A field that
describes the internal IDMS database key (whose alias is DBKEY) consists of the
SEGNAME and the string _KEY. A field indicating the sequence number for a repeating
group (whose alias is ORDER), is the same as its SEGNAME.

ALIAS

Alias names are calculated by the AUTOIDMS facility. For most fields, this value is the
letter F, the four-digit record ID, an underscore, and a unique sequence number (for
example, F0415_1). If a record is described more than once in a Master File, the alias is
suffixed with an alphabetic character. The alias is therefore unique within a Master File
and is consistent from Master File to Master File for the same subschema. The alias for
the last field of each record in an LRF is the letter F, the two character segment
sequence number, and the string .END. The alias for a calculated position field will be
blank. The alias DBKEY is used to identify the internal IDMS database key value and
appears at the end of each IDMS record described. The alias ORDER is used to identify
the sequence number of a repeating group and appears at the end of each segment for
repeating groups.

Changes to the Generated Descriptions in CA-IDMS
In general, you do not need to change the descriptions generated by the AUTOIDMS
facility. You may need to edit the generated Master File and/or its corresponding Access File
if:

• Duplicate field names exist. Truncation or ring structures in which record types are
used more than once are the likely causes.

• A record type is described that contains a discontiguous key comprised of more than
eight fields. In this case, shorten the aliases of the root fields in the Master and Access
File, and append the aliases of the additional fields in the Access File.

• You prefer to use different field names than those in the IDMS dictionary.

• You prefer to use an imbedded GROUP field instead of the group at the highest level.

• You prefer to use redefined fields in place of the parent fields.

• You want to display the values of BIT fields.

• You want to add edit display options to fields.

• You want to increase the display length of numeric fields.
iWay Data Adapter Administration for MVS and VM 5-93

CA-IDMS Access Control
Search Order for the Parameter Log File in CA-IDMS
The AUTOIDMS parameter log file is located in one of three ways, in the following order:

1. DDNAME IDMS$PRM

• If this ddname is allocated to a PDS prior to execution of AUTOIDMS, it will be used.
The member IDMS$PRM will be used or created for the user.

• If this ddname is allocated to a sequential data set, it id freed, a message generated,
and parameter logging will be disabled.

• AUTOIDMS does not free this ddname upon exiting, assuming that it may be used
again, even if it was allocated by AUTOIDMS with one of the following two
methods.

2. Data set name qualif.ACCESS.DATA

• This is the default name provided in the code as &DSNP0. If that default is changed
during the data adapter installation, then that data set name is used.

• This data set must be a PDS. If not, a message is displayed and parameter logging is
disabled.

3. DDNAME ACCESS

• The first data set allocated to ddname ACCESS is used as the parameter file if the
first two methods fail.

• If ddname ACCESS is not allocated, a message is displayed and AUTOIDMS exits.
AUTOIDMS can not be executed if there is no ddname for the IDMSIDD files.

Method number two assumes standard iWay Software naming conventions. Method
number three assumes that a user’s data set is allocated first in the concatenation of data
sets to ddname ACCESS. The first method allows the user to identify the profile data set
prior to execution of AUTOIDMS. This option is recommended for sites that have non-
standard data set naming conventions.

Enhancements to AUTOIDMS in CA-IDMS
The AUTOIDMS facility has been enhanced to include improved support for existing
features, better performance, and extensive online help. Features include accurate
descriptions of discontiguous keys and Logical Record Facility (LRF) records. Improvements
include the description of nested repeating groups; the description of redefined fields,
conditional fields, and duplicate fields as comments in the Master File, and many ease of
use enhancements.
5-94 iWay Software

Getting Started in CA-IDMS
Discontiguous Key Support in CA-IDMS
Discontiguous keys, which are supported as of Release 3.2, are described with the
AUTOIDMS facility. This enhancement applies to CALC, index, and key fields. The ALIAS
value that is generated by the AUTOIDMS facility is used in the key field description to
provide uniqueness. Records with up to eight discontiguous fields will be described
accurately. When more than eight discontiguous fields comprise the key, the description
will be created, however, you may be required to edit the ALIAS value in the Master File and
the key field value in the Access File.

Logical Record Facility (LRF) Support in CA-IDMS
The AUTOIDMS facility can describe LRF records. LRF records are Logical Records (LR) and
Automatic System Facility (ASF) records. On the Root Record Selection Screen, LRF records
are indicated by appending ,LR=Y to the Record Name and displaying LRF as the Record ID.
For LRF records, filler fields are provided if the last field does not end on a double-word
boundary. An ALIAS that includes the .END suffix is automatically provided for the last field
of each LRF record.

Extended Field Name Support in CA-IDMS
The AUTOIDMS facility generates the field name from the IDMS element name. You can
select to use the IDMS 32-character name or any portion of the IDMS element name. By
providing the starting position in the IDMS name, you can suppress common name
prefixes. The Record ID can also be suppressed from the field name by using the primary
name (DR-NAM-042) rather than the synonym name (SYN-NAM-083).

Group Field Support in CA-IDMS
Group elements at the COBOL level 02 can be described as GROUP fields. Except for CALC,
index, and key fields which are defined as groups when required, all other groups are
described as comments in the Master File to avoid describing groups within groups which
the server does not support. USAGE and ACTUAL formats are described accurately even if
the groups are described as comments.

Additional Repeating Group Support in CA-IDMS
A nested structure can be described where a repeating group contains another repeating
group; one OCCURS segment is the parent of another. When the repeating fields are
described as a group, the IDMS group name is used for the position field. When it is not a
group, a field name is generated which consists of the record selection order and
occurrence number. This enhancement allows the IDMS name to be used in the OCCURS
segment. An ORDER field is provided for each OCCURS segment.
iWay Data Adapter Administration for MVS and VM 5-95

CA-IDMS Access Control
USAGE Format Enhancements in CA-IDMS
For numeric display elements, the USAGE formats can optionally be alphanumeric. For
numeric display elements that are signed or contain a decimal, the USAGE formats are
packed decimal. Based upon your selection, other numeric display elements will be either
packed decimal or alphanumeric in the USAGE format.

Numeric display elements closely represent the IDMS format, for example, only as many
characters as required for digits, decimal, and sign are described.

When CALC, key, and index fields are described as numeric display elements in the IDMS
IDD, the ACTUAL formats are alphanumeric. These fields cannot be zoned.

“Smart” Segment, Field, and Alias Names in CA-IDMS
SEGNAMEs for records consist of record ID (SR-ID-032) and order selected. SEGNAMEs for
OCCURS segments consist of the parent order number and the occurrence number. Field
names for DBKEYs consist of the SEGNAME with a _KEY suffix. Field names for ORDER fields
are the SEGNAME of the OCCURS segment. ALIASes consist of the record ID and sequence
number within the segment. An alphanumeric suffix is appended when the record is used
more than once within a Master File. (The ALIAS will be consistent from Master File to
Master File for the same IDMS subschema.)

Documentation in the Master File in CA-IDMS
The following documentation is included in the Master File:

• Subschema name, user ID, date, and time created as comments.

• Redefined fields as comments.

• Conditional fields (for example, COBOL 88 elements) as comments. The value of the
conditional field has been provided as the USAGE format. (For ranges, the high end of
the range has been provided as the ACTUAL format.)

• All BIT fields have been described. The first of each set is described as a place holder.
The remaining bit fields are described as comments.

• Duplicate field names are appended to the Master File rather than being stored in
another file.

• IDMS element name is provided as a comment for all entries.

• A menu option to exclude these comments has been added. You can exclude anything
that the AUTOIDMS facility writes out as a comment (for example, re-defines, groups
within groups, 88 level elements, BIT fields except for the first one holding the space,
occurs segments that re-describe a commented field, and $DESC= attribute).
5-96 iWay Software

Getting Started in CA-IDMS
Enhancements in CA-IDMS
The following is a list of CA-IDMS enhancements:

• Logged default parameters.

• Online help.

• A list of IDMS subschemas, available online. The wildcard characters underscore (_) and
percent sign (%) can be used to select a subset of subschemas.

• The option to edit Master and Access Files without exiting the AUTOIDMS facility.

• The capability to produce a PICTURE from the Main Menu for the named MASTER. The
PICTURE must be allocated to ddname MASTER.

Improved Performance in CA-IDMS
The performance of the AUTOIDMS facility has been greatly increased over previous
releases by retrieving the entire subschema description from the IDMS Integrated Data
Dictionary (IDD) in one pass. After this information is obtained, movement between the
selection screens is immediate. The Master Files are created only after all of the selections
are completed. Creating a second Master File from the same IDMS subschema in the same
session does not retrieve data a second time; therefore, the performance of the AUTOIDMS
facility is enhanced.

CA-IDMS Installation
Refer to the iWay Server Installation manual for the AUTOIDMS installation procedure.

Changing Initial Data Set Defaults in CA-IDMS
The AUTOIDMS facility displays default output data set names for the Master and Access
Files. These defaults follow standard naming conventions. The defaults can be changed on
a per user basis by changing the values on the screen and then logging them to disk for
subsequent use. Alternatively, the AUTOIDMS procedure can be modified to include site
specific naming conventions for all users.
iWay Data Adapter Administration for MVS and VM 5-97

CA-IDMS Access Control
Syntax How to Edit the AUTOIDMS Procedure

To customize the initial data set defaults for all users, edit the AUTOIDMS procedure and
locate the following line:

-* Change this set of defaults for EDA access.

The following 3 lines refer to data set names for server access and may be changed.

-SET &DSNP0=&USERID ||'.ACCESS.DATA ';
-SET &DSNM0=&USERID ||'.MASTER.DATA ';
-SET &DSNF0=&USERID ||'.ACCESS.DATA ';

where:

&DSNP0

Is the Menu parameter log data set.

&DSNM0

Is the Master File output data set.

&DSNF0

Is the Access File output data set.

Change the expression on the right hand side of the equal sign as appropriate. The
resulting expression must retain a length of 44 characters (&USERID accounts for 8
characters). These are the only lines that require customization.
5-98 iWay Software

CHAPTER 6

6.Getting Started in CA-IDMS/SQL

Topics:

• Server Commands in CA-IDMS/SQL

• CA-IDMS/SQL Session Control: The
CONNECT Command

• CURRENT SCHEMA in CA-IDMS/SQL

• TRANSACTION in CA-IDMS/SQL

• Describing CA-IDMS/SQL Data
Sources

• CA-IDMS/SQL Access Control

In order to use the CA-IDMS/SQL Data Adapter, you must
set appropriate CA-IDMS/SQL and platform-specific
environment variables prior to starting the server. Check
with your System Administrator to see if these values have
already been set for you.

Note: For the remainder of this manual, IDMS/SQLrefers to
CA-IDMS/SQL.
iWay Data Adapter Administration for MVS and VM 6-1

Server Commands in CA-IDMS/SQL
Server Commands in CA-IDMS/SQL
The following topics discuss server commands. You can set these commands in any of the
supported server profiles.

• ERRORTYPE

• DBSPACE

• IXSPACE

• PASSRECS

Syntax How to Return Native IDMS/SQL Error Messages

Using SET ERRORTYPE, you can instruct the IDMS/SQL Data Adapter to return native IDMS/
SQL error messages for those error conditions that are reported by the DBMS. This feature
can be enabled both as an installation option and as a run time SET parameter.

SQL [SQLIDMS] SET ERRORTYPE DBMS

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this parameter value if you
previously issued the SET SQLENGINE command.

DBMS

Produces native IDMS/SQL error messages.
6-2 iWay Software

Getting Started in CA-IDMS/SQL
Syntax How to Designate a Default Storage Space for IDMS/SQL Tables

The DBSPACE environment variable enables you to designate a default storage space for
tables you create. For the duration of the session, the data adapter places such tables in the
IDMS/SQL data source you identify in the SET DBSPACE command. Note that the data
adapter may have been installed with a default, site-specific, DBSPACE specification.

SQL [SQLIDMS] SET DBSPACE storage

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this value if you previously issued the
SET SQLENGINE command.

storage

Is the segment.area name that contains the IDMS/SQL tables created by the CREATE
FILE command. If a name is not specified, the table is placed in the IDMS/SQL default
area for the current schema in effect for the user’s SQL session.

Note: This command only affects CREATE TABLE requests made by Table Services. It does
not affect Passthru CREATE TABLE commands.

Syntax How to Override Default Parameters for the CA-IDMS/SQL Index Space

SQL [SQLIDMS] SET IXSPACE [index-spec]

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this value if you previously issued the
SET SQLENGINE command.
iWay Data Adapter Administration for MVS and VM 6-3

Server Commands in CA-IDMS/SQL
index-spec

Is the portion (up to 94 bytes) of the SQL CREATE INDEX statement beginning with IN
segment.area (as specified in the CA-IDMS/DB Release 12 Reference CREATE INDEX
syntax diagram).

Note: To reset to the IDMS/SQL default index space parameters, issue the SET IXSPACE
command with no operands.

Use the long form of SQL Passthru syntax for commands that exceed one line:

SQL SQLIDMS
SET IXSPACE index-spec
END

For example, to specify the USING-BLOCK, FREE-BLOCK, and CLUSTER portions of the
CREATE INDEX statement, enter the following commands:

SQL SQLIDMS
SET IXSPACE USING STOGROUP SYSDEFLT PRIQTY 100
SECQTY 20 FREEPAGE 16 PCTFREE 5 CLUSTER
END

Note: This command will only affect CREATE INDEX requests made by Table Services. It
does not affect Passthru CREATE INDEX commands.

Syntax How to Obtain the Number of Rows Affected By an SQL Command

You can use the SET PASSRECS command to obtain the number of rows affected by a
successfully executed SQL Passthru UPDATE or DELETE command.

SQL [SQLIDMS] SET PASSRECS {ON|OFF}

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this value if you previously issued the
SET SQLENGINE command.

ON

Provides an informational message after the successful execution of an SQL Passthru
UPDATE or DELETE command.

OFF

Does not provide a message after the successful execution of an SQL Passthru UPDATE
or DELETE command. This value is the default.

In addition, the data adapter updates the &RECORDS system variable with the number
of rows affected. You can access this variable using Dialogue Manager.

Note that since, by definition, the successful execution of an INSERT command always
affects one record, INSERT does not generate this information.
6-4 iWay Software

Getting Started in CA-IDMS/SQL
CA-IDMS/SQL Session Control: The CONNECT Command
An SQL session is a connection between the application and the IDMS/SQL data source. It
begins when the application connects to a dictionary. You use the CONNECT command to
override the IDMS/SQL default (automatic) connection. The length of time an SQL session
stays in effect depends on whether the connection began automatically or a CONNECT
command was issued. If the CONNECT command was issued, the SQL session is in effect
until a COMMIT RELEASE, ROLLBACK RELEASE, or RELEASE command is executed. All of
these commands may be executed within the IDMS/SQL session using SQL Passthru. Refer
to the appropriate IDMS/DB Release 12 documentation for more information regarding
SQL sessions.

Syntax How to Override Default Connections

SQL [SQLIDMS] CONNECT TO dictname

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this value if you previously issued the
SET SQLENGINE command.

dictname

Is the data source (dictionary) to start the IDMS/SQL session; the default is the
dictionary in effect for the user session. This default is set outside of the server session,
for example, with a SYSIDMS DICTNAME parameter. Refer to the appropriate CA-IDMS/
DB Release 12 documentation for a complete description.

IDMS/SQL Session Control: Other Session Commands
Other IDMS/SQL commands that affect the IDMS/SQL session can be executed explicitly.

To issue IDMS/SQL session commands such as COMMIT, COMMIT RELEASE, ROLLBACK,
ROLLBACK RELEASE, and COMMIT CONTINUE, the syntax is:

SQL [SQLIDMS] COMMIT RELEASE

CURRENT SCHEMA in CA-IDMS/SQL
The CA-IDMS/SQL Data Adapter uses the user-specified schema name as the first qualifier
for all SQL requests involving SQL tables or views. This command overrides the IDMS/SQL
current schema in effect and precludes the specification of unqualified table names. This
prevents passing unqualified table names to IDMS/SQL.
iWay Data Adapter Administration for MVS and VM 6-5

TRANSACTION in CA-IDMS/SQL
Syntax How to Identify the CA-IDMS/SQL Current Schema

SQL [SQLIDMS] SET SESSION CURRENT SCHEMA schema

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this value if you previously issued the
SET SQLENGINE command.

schema

Is the name of the schema in SQL requests.

TRANSACTION in CA-IDMS/SQL
IDMS/SQL protects data being read by one user from changes (INSERT, UPDATE, or DELETE)
made by others; the Isolation Level setting governs the duration of the protection. That is,
the Isolation Level determines when shared locks on rows are released, so that those rows
or pages become available for updates by other users. IDMS/SQL allows you to dynamically
set the Isolation Level within the server session using the IDMS/SQL SET TRANSACTION
command.

The SET TRANSACTION CURSOR STABILITY or TRANSIENT READ command affects the
duration of row or page shared locks on IDMS/SQL tables for the duration of the IDMS/SQL
transaction. You can specify the command within a stored procedure. The setting remains
in effect for the server session or until you reset it.

Syntax How to Set Isolation Levels Within a Server Session

SQL [SQLIDMS] SET TRANSACTION=transaction

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this value if you previously issued the
SET SQLENGINE command.

transaction

Allows you to dynamically set the Isolation Level within the server session. Possible
values are:

CURSOR STABILITY provides the maximum amount of concurrency while
guaranteeing the integrity of the data selected. This value is the default.
6-6 iWay Software

Getting Started in CA-IDMS/SQL
TRANSIENT READ allows the reading of records locked by other users (allows dirty
reads). Recommended for SQL request only. Transient read prevents the SQL
transaction from performing updates. Use this only when you do not need the data
retrieved to be absolutely consistent and accurate. If you specify Transient Read, IDMS/
SQL assumes it is read-only.

READ ONLY allows data to be retrieved, but does not allow the data source to be
updated.

READ WRITE allows data to be retrieved, and allows the data source to be updated.

Describing CA-IDMS/SQL Data Sources
The following topics describe the CA-IDMS/SQL data sources:

• Master Files

• Access Files

• Primary key

• Creating virtual fields

Note: These topics apply only to a Full-Function Server. They do not apply to a server
configured as a Relational Gateway.

CA-IDMS/SQL Master Files
The following topics describe the types of Master File declarations:

Each declaration must begin on a separate line. A declaration consists of attribute-value
pairs separated by commas. A declaration can span as many lines as necessary, as long as
no single keyword-value pair spans two lines.

Do not use system or reserved words as names for files, segments, fields, or aliases.
Specifying a reserved word generates syntax errors.

Declaration Type Description

File Names the file and describes the type of data source.

Segment Identifies a table, file, view, or segment.

Field Describes the columns of the table or view.
iWay Data Adapter Administration for MVS and VM 6-7

Describing CA-IDMS/SQL Data Sources
Syntax How to Identify Master Files for CA-IDMS/SQL

Each Master File begins with a file declaration. The file declaration has two attributes:

FILENAME (FILE)

Identifies the Master File.

SUFFIX

Identifies the data adapter needed to interpret the request.

The syntax is

FILE[NAME]=file, SUFFIX=SQLIDMS [,$]

where:

file

Is the file name for the Master File. The file name can consist of a maximum of eight
alphanumeric characters. The file name should start with a letter and be representative
of the table or view contents.

SQLIDMS

Is the value for the IDMS/SQL Data Adapter.
6-8 iWay Software

Getting Started in CA-IDMS/SQL
Syntax How to Specify CA-IDMS/SQL Segment Attributes

Each table described in a Master File requires a segment declaration. The segment
declaration consists of at least two attributes:

SEGNAME

Identifies one table.

SEGTYPE

Identifies the physical storage of rows and the uniqueness of column values.

The syntax for a segment declaration is

SEGNAME=segname, SEGTYPE=S0 [,$]

where:

segname

Is the segment name that serves as a link to the actual IDMS/SQL table name. It can
consist of a maximum of 8 alphanumeric characters. It may be the same as the name
chosen for FILENAME, the actual table name, or an arbitrary name.

The SEGNAME value in the Master File must be identical to the SEGNAME value
specified in the Access File.

S0

Indicates that IDMS/SQL assumes responsibility for both physical storage of rows and
the uniqueness of column values (if a unique index or calc key exists). It always has a
value of S0 (S zero).

Syntax How to Specify CA-IDMS/SQL Field Attributes

Each row in a table may consist of one or more columns. These columns are described in
the Master File as fields with the following primary field attributes:

FIELDNAME

Identifies the name of a field.

ALIAS

Identifies the full IDMS/SQL column name.

USAGE

Identifies how to display a field on reports.

ACTUAL

Identifies the IDMS/SQL data type and length in bytes for a field.
iWay Data Adapter Administration for MVS and VM 6-9

Describing CA-IDMS/SQL Data Sources
MISSING

Identifies whether a field supports null data.

You can find values for these attributes in the IDMS/SQL schema definition or standard
IDMS/SQL dictionary reports.

The syntax for a field declaration is

FIELD[NAME]=fieldname, [ALIAS=]sqlcolumn, [USAGE=]display_format,
 [ACTUAL=]storage_format [,MISSING={ON|OFF}], $

where:

fieldname

Is the unqualified name of the field. This value must be unique within the Master File.
The name can consist of a maximum of 48 alphanumeric characters (including any file
name and segment name qualifiers and qualification characters you may later prefix to
them in your requests). The name must begin with a letter. Special characters and
embedded blanks are not recommended. The order of field declarations in the Master
File is significant with regard to the specification of key columns. For more information,
see The Primary Key in CA-IDMS/SQL on page 6-14.

It is not necessary to describe all the columns of the IDMS/SQL table in your Master File.

sqlcolumn

Is the full IDMS/SQL column name (the data adapter uses it to generate SQL
statements). This value must comply with the same naming conventions described for
field names.

display_format

Is the display format. The value must include the field type and length and may contain
edit options.

The data type of the display format must be identical to that of the ACTUAL format. For
example, a field with an alphanumeric USAGE data type must have an alphanumeric
ACTUAL data type.

Fields or columns with decimal or floating point data types must be described with the
correct scale (s) and precision (p). Scale is the number of positions to the right of the
decimal point. Precision is the total length of the field.

For the server, the total display length of the field or column includes the decimal point
and negative sign. In SQL, the total length of the field or column excludes positions for
the decimal point and negative sign.

For example, a column defined as DECIMAL(5,2) would have a USAGE attribute of P7.2
to allow for the decimal point and a possible negative sign.
6-10 iWay Software

Getting Started in CA-IDMS/SQL
storage_format

Is the storage format of the IDMS/SQL data type and length, in bytes, for the field. For
more information on data type support, see the iWay SQL Reference manual.

ON

Displays the character specified by the NODATA parameter for missing data. For more
information, see MISSING Attribute in CA-IDMS/SQL on page 6-11.

OFF

Displays blanks or zeroes for fields having no value. This is the default. For more
information, see MISSING Attribute in CA-IDMS/SQL on page 6-11.

MISSING Attribute in CA-IDMS/SQL
In a table, a null value represents a missing or unknown value; it is not the same as a blank
or a zero. For example, a column specification that allows null values is used where a
column need not have a value in every row (such as a raise amount in a table containing
payroll data).

Note:

• The default NODATA character is a period.

• A column in an IDMS/SQL table that allows null data does not need to include the NULL
clause in its table definition, since that is the default. In the Master File for that table, the
column that allows null data must be described with the MISSING attribute value ON.
The default for this attribute is OFF, which corresponds to the NOT NULL attribute in the
IDMS/SQL table definition.

• Null data values appear as zeroes or blanks, if the column allows null data but the
corresponding field in the Master File is described with the MISSING attribute value
OFF.

CA-IDMS/SQL Access Files
Each Master File must have a corresponding Access File. The file name of the Access File
must be the same as that used for the Master File.

The Access File serves as a link between the server and the data source by providing the
means to associate a segment in the Master File with the table it describes. The Access File
minimally identifies the table and primary key. It may also indicate the logical sort order of
data.

Syntax How to Specify Segment Declarations in CA-IDMS/SQL

The segment declaration in the Access File establishes the link between one segment of the
Master File and the actual IDMS/SQL table or view. Attributes that constitute the segment
declaration are:
iWay Data Adapter Administration for MVS and VM 6-11

Describing CA-IDMS/SQL Data Sources
SEGNAME

Identifies one table.

TABLENAME

Identifies the table or view. It should contain both the schema and the table name.

DBSPACE

Identifies the IDMS/SQL segment and area in which the IDMS/SQL table is to reside.

KEYS

Identifies how many columns constitute the primary key.

KEYORDER

Identifies the logical sort sequence of data by the primary key.

The syntax for an Access File segment declaration is

SEGNAME=segname, TABLENAME=[schema.]tablename, [,DBSPACE=storage,]
KEYS={0|n}, KEYORDER=keyorder,$

where:

segname

Is the one-to-eight-character SEGNAME value from the Master File.

schema

Is the IDMS/SQL schema name for the table or view. It can consist of a maximum of 8
characters. If it is not specified, IDMS/SQL searches for a temporary table definition for
the named table. If the named table does not exist, IDMS/SQL uses the current schema
in effect for the current user session.

tablename

Is the name of the table or view. It can consist of a maximum of 18 characters.

Note: If any part of the TABLENAME includes a dollar sign ($), enclose that part in
double quotation marks, and enclose the entire TABLENAME value in single quotation
marks.
6-12 iWay Software

Getting Started in CA-IDMS/SQL
The maximum IDMS/SQL length for a fully-qualified table name is 36. All names must
conform to the rules for identifiers stated in the CA-IDMS/DB Release 12 SQL Reference.

 If any part of the TABLENAME includes a dollar sign ($), enclose that part in double
quotation marks, and enclose the entire TABLENAME value in single quotation marks.

The maximum IDMS/SQL length for a fully-qualified table name is 36.

storage

Is the IDMS/SQL segment and area name (in the form segment.area). If not specified,
IDMS/SQL uses the default area associated with the schema. Enclose it in double
quotation marks if it begins with a number or special character or contains special
characters.

The Access File DBSPACE attribute overrides both the SET command and the
installation default.

n

Is the number of columns that constitute the primary key. It can be a value between 0
and 64. The default value is 0. For more information, see The Primary Key in CA-IDMS/SQL
on page 6-14.

keyorder

Identifies the logical sort sequence of data by the primary key. Possible values are:

LOW(ASC)

Indicates an ascending primary key sort sequence. This value is the default. ASC is a
synonym for LOW.

HIGH(DESC)

Indicates a descending primary key sort sequence. DESC is a synonym for HIGH.
iWay Data Adapter Administration for MVS and VM 6-13

Describing CA-IDMS/SQL Data Sources
The Primary Key in CA-IDMS/SQL
A table’s primary key consists of the column or combination of columns whose values
uniquely identify each row of the table. In the employee table, for example, every employee
is assigned a unique employee identification number. Each employee is represented by one
and only one row of the table, and is uniquely identified by that identification number.

The order of field declarations in the Master File is significant to the specification of key
columns. To define the primary key in a Master File, describe its component fields
immediately after the segment declaration. You can specify the remaining fields in any
order. In the Access File, the KEYS attribute completes the process of defining the primary
key.

To identify the primary key, the data adapter uses the number of columns (n) indicated by
the KEYS attribute in the Access File and the first n fields described in the Master File.

Typically, the primary key is supported by the creation of a unique index in the SQL
language to prevent the insertion of duplicate key values. The data adapter itself does not
require any index in the column(s) comprising the primary key (although a unique index is
certainly desirable for both data integrity and performance reasons).
6-14 iWay Software

Getting Started in CA-IDMS/SQL
CA-IDMS/SQL Access Control
In any computer system, it is important that data be secured from unauthorized access.
Both CA-IDMS/SQL and the server provide security mechanisms to ensure that users have
access to only those objects for which they have authorization.

Syntax How to Set the Scope of Logical Units of Work in CA-IDMS/SQL

This topic explains how to set the scope of logical units of work using data adapters. This is
accomplished by the SET AUTODISCONNECT command.

SQL [SQLIDMS] SET AUTODISCONNECT ON {FIN|COMMIT}

where:

SQLIDMS

Indicates the IDMS/SQL data source. You can omit this parameter value if you
previously issued the SET SQLENGINE command.

FIN

Disconnects automatically only after the server session has been terminated. This value
is the default.

COMMIT

Disconnects when a COMMIT or ROLLBACK is issued as a native SQL command. This
setting frees the thread of execution for use by other users. The disadvantage is the
cost of repeatedly connecting and acquiring a thread. Threads, once released, may not
be available when needed, so you may experience delays while your request waits for a
thread.

Depending on how often the event occurs, the AUTODISCONNECT command may result in
considerable overhead. Almost all of this overhead is not related to the server; it is related
to the operating system and the data source.
iWay Data Adapter Administration for MVS and VM 6-15

CA-IDMS/SQL Access Control
6-16 iWay Software

CHAPTER 7

7.Getting Started in DB2

Topics:

• Server Commands for DB2

• Describing DB2 Data Sources

• DB2 Access Control

• CREATE SYNONYM Command for
DB2

• Setting the Scope of Logical Units
of Work (MVS)

• DB2 Data Adapter Dialogue
Manager Variables

In order to use the DB2 Data Adapter, you need to set
appropriate DB2 and platform specific environment
variables prior to starting the server. Refer to the iWay
Server Configuration manual for the specific platform to
learn about these environment variables, or check with
your System or Server Administrator to see if these values
have already been set for you. All data adapter
environment settings are available for display as Dialogue
Manager variables.
iWay Data Adapter Administration for MVS and VM 7-1

Server Commands for DB2
Server Commands for DB2
The following topics describe the server commands for DB2:

• REMOTECAT

• CURRENT DEGREE

• DBSPACE

• IXSPACE

• ERRORTYPE

• PASSRECS

• PLAN

• CONVERSION

Enabling DB2 Aliases
This command enables you to take advantage of DB2 aliases. DB2 allows a table alias in one
DB2 subsystem to access a physical table in another DB2 subsystem. The physical table can
be located in either a local or remote subsystem. You can include the command in any of
the supported server profiles.

Syntax How to Enable DB2 Aliases

To enable the use of DB2 aliases, include the following command in any of the supported
server profiles:

SQL DB2 SET REMOTECAT ON

Supporting Parallel Processing
If you are using the DB2 Data Adapter on MVS or VM, DB2 Version 3 supports parallel query
I/O and Version 4 supports parallel query CPU to improve response. The data adapter
supports parallel processing if you issue the SET CURRENT DEGREE command prior to the
request.
7-2 iWay Software

Getting Started in DB2
Syntax How to Support Parallel Processing

SQL [DB2] SET CURRENT DEGREE={'1'|'ANY'}

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

1

Invokes serial processing. This value is the default.

ANY

Invokes parallel processing for dynamic requests. If the thread to DB2 gets closed
during the session, the value resets to '1'.

Designating a Default Storage Space for Tables
If you are using the DB2 Data Adapter on MVS or VM, the DBSPACE environment variable
enables you to designate a default storage space for tables you create. For the duration of
the session, the data adapter places such tables in the DB2 data source that you identify in
the SET DBSPACE command. Note that the data adapter may have been installed with a
default, site-specific, DBSPACE specification.

Syntax How to Designate a Default Storage Space for a Table

SQL [DB2] SET DBSPACE {dbname.tablespace|DATABASE dbname}

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

dbname

Is the data source name. The default value is DSNDB04, a public data source.

tablespace

Is the tablespace name.

Note: This command will only affect CREATE TABLE requests issued by Table Services. It
does not affect Passthru CREATE TABLE commands.
iWay Data Adapter Administration for MVS and VM 7-3

Server Commands for DB2
 Overriding Default Parameters for the DB2 Index Space
If you are using the DB2 Data Adapter on MVS or VM, you can implicitly override the default
parameters for the DB2 index space.

Syntax How to Override Default Parameters for the DB2 Index Space

SQL [DB2] SET IXSPACE [index-spec]

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

index-spec

Is the portion (up to 94 bytes) of the SQL CREATE INDEX statement beginning with
USING-BLOCK (as specified in the IBM DB2 SQL Reference CREATE INDEX syntax
diagram).

Note: To reset to the DB2 default index space parameters, issue the SET IXSPACE command
with no operands.

Use the long form of SQL Passthru syntax for commands that exceed one line:

SQL DB2
SET IXSPACE index-spec
END

For example, to specify the USING-BLOCK, FREE-BLOCK, and CLUSTER portions of the
CREATE INDEX statement, enter the following commands:

SQL DB2
SET IXSPACE USING STOGROUP SYSDEFLT PRIQTY 100
SECQTY 20 FREEPAGE 16 PCTFREE 5 CLUSTER
END

Note: This command will only affect CREATE INDEX requests issued by Table Services. It
does not affect Passthru CREATE INDEX commands.

Returning Native DB2 Error Messages
Using SET ERRORTYPE, you can instruct the DB2 Data Adapter to return native DB2 error
messages for those error conditions that are reported by the RDBMS. This feature can be
enabled both as an installation option and as a run time SET parameter.
7-4 iWay Software

Getting Started in DB2
Syntax How to Return Native DB2 Error Messages

SQL [DB2] SET ERRORTYPE DBMS

where:

DB2

Indicates the DB2 data source. You can omit this parameter value if you previously
issued the SET SQLENGINE command.

DBMS

Produces native DB2 error messages.

Obtaining the Number of Rows Affected By an SQL Passthru Command
If you are using the DB2 Data Adapter on any platform, you can use the SET PASSRECS
command to obtain the number of rows affected by a successfully executed SQL Passthru
INSERT, UPDATE, or DELETE command.

Syntax How to Obtain the Number of Rows Affected By an SQL Passthru Command

SQL [DB2] SET PASSRECS {ON|OFF}

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

ON

Provides the number of rows affected in the application program SCB count member
after the successful execution of an SQL Passthru INSERT, UPDATE, or DELETE
command.

OFF

Provides no information after the successful execution of an SQL Passthru INSERT,
UPDATE, or DELETE command. This value is the default.

In addition, the data adapter updates the &RECORDS system variable with the number of
rows affected. You can access this variable using Dialogue Manager.

Identifying the DB2 Application Plan
If you are using the DB2 Data Adapter on MVS or VM, you must identify your DB2
application plan before you execute any requests. The server, by default, uses the plan
created at installation time.
iWay Data Adapter Administration for MVS and VM 7-5

Server Commands for DB2
Syntax How to Identify the DB2 Application Plan

SQL [DB2] SET PLAN planname

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

planname

Is the name of your application plan.

• Note: The default Isolation Level for the DB2 Data Adapter is Cursor Stability (CS). At
installation time, your site may have chosen Repeatable Read (RR) as the Isolation Level.
Your DB2 Database Administrator can provide you with the Isolation Level for a given
data adapter application plan.

• Sometimes, a site binds two different plans during the installation process from the
same DBRMLIB; each specifies a different Isolation Level to control data source locking.
You can use the SET PLAN command to, in effect, change your Isolation Level in a server
session. A level of repeatable read (RR) is required for read/write applications; cursor
stability (CS) is recommended for SELECT operations.

• If the plan needs to be changed from the default, you must code the above command
in one of the supported server profiles.

If you are using CALLPGM to access DB2, we recommend using packages. For more
information, see the iWay Stored Procedures manual.

Conversion for DB2
The following topics pertain to conversion:

• Clob activation in DB2.

• Bob activation in DB2 (MVS).

• Blob read/write support in DB2 (MVS).
7-6 iWay Software

Getting Started in DB2
CLOB Activation in DB2
The default mapping for DB2 data types VARCHAR and LONG VARCHAR is the data type
ALPHA.

The ALPHA data type maximum supported length is 32768 characters. It is now possible to
perform SELECT, INSERT, and UPDATE on columns with the above data types without the
use of the data type CLOB.

In releases prior to 4.3.1, the ALPHA data type maximum supported length was 256. Since
the VARCHAR and LONG VARCHAR data types had lengths greater than 256, you had to use
the data type CLOB in order to perform SELECT, INSERT, and UPDATE on columns with these
data types.

Syntax How to Activate Support for the CLOB Data Type

The default mapping for DB2 data type VARCHAR is the data type ALPHA. The ALPHA data
type maximum supported length is 4096 for TABLE/MODIFY and 32768 characters for API
applications. It is now possible to perform SELECT, INSERT, and UPDATE on columns longer
than 256 with the above data types without the use of the server data type CLOB.

In releases prior to 4.3.1 the ALPHA data type maximum supported length was 256. Since
the VARCHAR and LONG VARCHAR data types have lengths greater than 256, you had to
use the data type CLOB to perform SELECT, INSERT, and UPDATE on columns with these
data types.

To activate support for the data type CLOB, you have to issue the following command in
one of the supported server profiles

SQL [DB2] SET CONVERSION LONGCHAR TEXT

where:

DB2

Indicates the DB2 Data Adapter. You can omit this value if you previously issued the SET
SQLENGINE command.

TEXT

Activates long character support. The default is ALPHA.
iWay Data Adapter Administration for MVS and VM 7-7

Server Commands for DB2
BLOB Activation for DB2 (MVS)
DB2 data types that support the for bit data attribute including VARCHAR(n) where n > 256
and LONG VARCHAR can be supported in the server as BLOBs (Binary Large Objects). This
support is for both read and write access.

Syntax How to Activate Support for BLOB

To activate BLOB support, you must issue the following command in the one of the
supported server profiles

SQL [DB2] SET CONVERSION LONGCHAR BLOB

where:

DB2

Indicates the DB2 Data Adapter. You can omit this value if you previously issued the SET
SQLENGINE command.

BLOB

Activates long binary support. The default is ALPHA.

BLOB Read/Write Support in DB2 (MVS)
For DB2 data types VARCHAR (>256) and LONG VARCHAR which have the for bit data
attribute, the server provides read and write support using three server remote procedure
routines. These routines are:

The sequence of operations for the client application is as follows.

1. The application converts every binary byte of the image into 2 bytes of hexadecimal
data and stores the result in an internal buffer. If the image is large, it can be split into
manageable pieces.

2. The converted binary bytes are sent to the server using remote procedure EDABS. The
server converts the hex data back to binary and stores the image ready for INSERT/
UPDATE into DB2.

3. Steps 1 and 2 are repeated until the complete image, in hex format, is sent to the server.
The remote procedure EDABE is then sent in order to mark the end of the image.

EDABS Used to send binary image data to the server.

EDABE Used to mark the end of the binary image.

EDABK Used to purge the binary image from server
storage.
7-8 iWay Software

Getting Started in DB2
4. The client application prepares an SQL INSERT/UPDATE using parameter markers for
the columns of the row.

5. The client application issues a BIND for the columns using CHAR(16) for the image
column.

6. The client application issues an EXECUTE USING command giving the data values for
the row columns but using BLOB for the image. The row will be INSERTed/UPDATEd
using the image buffer stored on the server.

7. Once the application has finished with the stored image on the server (and COMMITed
the data) it should send the EDABK remote procedure to release server storage.

For full details and examples of how to maintain DB2 ‘for bit data’ columns, see the API
Reference and Connector for ODBC manuals.

Describing DB2 Data Sources
The following topics describe DB2 data sources:

• Master Files.

• Access Files.

Syntax How to Identify Master Files for DB2

SUFFIX

Identifies the data adapter needed to interpret the request.

The syntax is

FILE[NAME]=file, SUFFIX=DB2 [,$]

where:

file

Is the file name for the Master File. The file name can consist of a maximum of eight
alphanumeric characters. The file name should start with a letter and be representative
of the table or view contents.

DB2

Is the value for the DB2 Data Adapter.

Reference DB2 Access Files

MVS platform only

SEGNAME=segname, TABLENAME=[location.][creator.]tablename,
DBSPACE={dbname.tablespacename|DATABASE dbname},KEYS ={0|n}
,KEYORDER=keyorder
iWay Data Adapter Administration for MVS and VM 7-9

DB2 Access Control
DB2 Access Control
The following topics describe DB2 access control:

• DB2 CURRENT SQLID.

• Setting the access rules.

• CONNECTION support (DRDA) for Non-CLI DB2.

In any computer system, it is important that data be secured from unauthorized access.
Both DB2 and the server provide security mechanisms to ensure that users have access to
only those objects for which they have authorization.

DB2 CURRENT SQLID (MVS)
DB2 accepts two types of ID: the primary authorization ID and one or more optional
secondary authorization IDs. It also recognizes the CURRENT SQLID setting.

Any interactive user or batch program that accesses a DB2 subsystem is identified by a
primary authorization ID. A security system, such as RACF, normally manages the ID. During
the process of connecting to DB2, the primary authorization ID may be associated with one
or more secondary authorization IDs (usually RACF groups). Each site controls whether it
uses secondary authorization IDs. For more information about using the data adapter in
conjunction with external security packages, see the server manual for your platform.

The primary authorization ID is the same ID passed to the server at connect time. This user
ID is then used to connect to the DB2 subsystem.

The DB2 Database Administrator may grant privileges to a secondary authorization ID that
are not granted to the primary ID. Thus, secondary authorization IDs provide the means for
granting the same privileges to a group of users. (The DBA associates individual primary IDs
with a secondary ID and grants the privileges to the secondary ID.)

The DB2 CURRENT SQLID may be the primary authorization ID or any associated secondary
authorization ID. At the beginning of the session, the CURRENT SQLID is the primary
authorization ID.
7-10 iWay Software

Getting Started in DB2
Syntax How to Reset the CURRENT SQLID

You can reset the CURRENT SQLID in a stored procedure or a profile using the following
data adapter command

SQL [DB2] SET CURRENT SQLID = 'sqlid'

where:

DB2

Indicates the DB2 data source. You can omit this parameter value if you previously
issued the SET SQLENGINE command.

sqlid

Is the desired primary or secondary authorization ID, which must be enclosed in single
quotation marks as shown. All DB2 security rules are respected.

The CURRENT SQLID is the default owner ID for DB2 objects, such as tables or indices,
created with dynamic SQL statements. The CURRENT SQLID is also the sole authorization ID
for GRANT and REVOKE statements. It must have all the privileges needed to create objects
as well as GRANT and REVOKE privileges. In addition, the CURRENT SQLID is the implicit
owner for unqualified table names.

Other types of requests, such as SQL SELECT, INSERT, UPDATE, or DELETE requests,
automatically search for the necessary authorization using the combined privileges of the
primary authorization ID and all of its associated secondary authorization IDs, regardless of
the DB2 CURRENT SQLID setting.

The CURRENT SQLID setting remains in effect until the thread to DB2 is disconnected, when
it reverts to the primary authorization ID.

DB2 Connection Support (DRDA) for Non-CLI DB2
The DB2 Data Adapter supports the following connection commands in addition to IBM’s
Distributed Relational Database Architecture (DRDA):

• The CONNECT TO command.

• The Level 1 DRDA CONNECT command (OS/390, z/OS, OS/2, Windows NT/2000).

• The Level 2 DRDA commands included in DB2 Version 3, and the SET CURRENT
PACKAGESET command included in DB2 Version 2 Release 3 and Version 3 (MVS).
iWay Data Adapter Administration for MVS and VM 7-11

DB2 Access Control
DB2 CONNECT TO and Level 1: CONNECT
You can change your default database server with the CONNECT command. You can
include this command in any of the supported server profiles.

Syntax How to Change the Default Database Server

SQL [DB2] CONNECT {RESET|TO dbname}

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

RESET

Reconnects to the local DB2 server.

dbname

Is the DB2 location identifier.

The data adapter must be installed using the DB2 BIND PACKAGE command. For more
information, consult your DB2 Database Administrator.

For more information, see the IBM DB2 SQL Reference for DB2.

Syntax How to Change the Default Database Server on Windows NT/2000

SQL DB2 CONNECT TO database USER userid USING password

where:

database

Is the name of the DB2 database you wish to access.

userid

Is the user ID by which you are known to DB2.

password

Is the password associated with the user ID.
7-12 iWay Software

Getting Started in DB2
Syntax How to Change the Default Database Server on UNIX

SQL [DB2] CONNECT {RESET|TO dbname} USER userid USING password]

where:

RESET

Resets the connection. You must issue the CONNECT TO command to establish a
database connection before you issue the next SQL command.

dbname

Is the name of the DB2 database you wish to access.

userid

Is the user ID by which you are known.

password

Is the password associated with the user ID.

Syntax How to Invoke DB2 Level 2:Connection, Release, Current Package Set (MVS)

SQL [DB2] SET CONNECTION servername
SQL [DB2] RELEASE servername

or

SQL [DB2] RELEASE CURRENT

or

SQL [DB2] RELEASE ALL [SQL]

or

SQL [DB2] RELEASE ALL PRIVATE

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

servername

Is the location name of any valid DRDA database server.
iWay Data Adapter Administration for MVS and VM 7-13

CREATE SYNONYM Command for DB2
You can use the SET CURRENT PACKAGESET command to switch application packages
during a session. The effect is similar to the SET PLAN command, but does not require that
the DB2 thread be closed and reopened (for example, when switching Isolation Levels).

SQL [DB2] SET CURRENT PACKAGESET {USER|packageset_name}

where:

DB2

Indicates the DB2 data source. You can omit this value if you previously issued the SET
SQLENGINE command.

USER

Returns the setting to the primary DB2 authorization ID of the process.

packageset_name

Is the name of any packageset previously bound in the current DB2 plan.

Use of DRDA and the SET CURRENT PACKAGESET command requires that the data adapter
be installed using the DB2 BIND PACKAGE command. For more information, consult with
the Database Administrator at your site.

For a complete description of these commands, refer to the IBM SQL Reference for DB2
manual.

CREATE SYNONYM Command for DB2
The following section describes how to use the CREATE SYNONYM command for DB2.

Syntax How to Use the CREATE SYNONYM Command for DB2

CREATE SYNONYM synonym FOR datasource DBMS DB2
[AT connection_name][NOCOLS]
END

where:

synonym

Is an alias for the data source (maximum 64 characters for UNIX and Windows NT/2000
server platforms; maximum eight characters for other server platforms such as OS/390,
z/OS, and CICS).

datasource

Is the fully-qualified name for the physical data structure, which is
location.ownerid.tablename in DB2. See the DB2 documentation for specific naming
conventions.

DB2

Is the SQLENGINE for the DB2 Data Adapter.
7-14 iWay Software

Getting Started in DB2
AT connection_name

Is the name used by the DBMS for the database server on which the data source
resides. When the server creates the synonym, this command becomes the value for
SERVER= in the Access File. Use this option when dynamically switching server access
from one RDBMS server to another.

If, after creating the synonyms with this option, the RDBMS server's environment
changes (for example, if tables are moved to a different RDBMS server), you must either
create new synonyms or edit existing ones.

If this parameter is omitted, the server uses RDBMS specific settings in its environment.

NOCOLS

Optionally specifies that the Master File created for the synonym should not contain
column information. If this option is used, the column data is retrieved dynamically
from the data source at run time of the SQL request.

END

Indicates the end of the command, and is required on a separate line in the stored
procedure.

Note: The CREATE SYNONYM command can span more than one line. However, a single
element cannot span more than one line.

 Setting the Scope of Logical Units of Work (MVS)
The following topic explains how to set the scope of logical units of work.

SET AUTOaction on Event Command in DB2 (MVS)
The SET AUTOaction on Event command allows you to control when the data adapter
issues actions.

Syntax How to Use SET AUTOaction on Event Command

SQL [DB2] SET {AUTOCLOSE|AUTODISCONNECT} ON {COMMIT|FIN}

where:

DB2

Indicates the DB2 data source. You can omit this parameter value if you previously
issued the SET SQLENGINE command.

AUTOCLOSE

Issues the DB2 CAF CLOSE operation.

AUTODISCONNECT

Issues the DB2 Call Attach Facility (CAF) DISCONNECT operation.
iWay Data Adapter Administration for MVS and VM 7-15

Setting the Scope of Logical Units of Work (MVS)
COMMIT

Executes the specified action when a COMMIT or ROLLBACK is issued as a native SQL
command.

FIN

Executes the specified action automatically only after the session has been terminated.
This value is the default.

AUTOCLOSE in DB2
SET AUTOCLOSE initiates the DB2 Call Attachment Facility (CAF) CLOSE operation. It
determines how long a thread (the connection between the application program in the
user’s address space and the DB2 application plan) is open. The thread is not the same as
the address space connection to DB2; that connection is controlled by the
AUTODISCONNECT setting.

In the server, an application program is one of the following:

• The dynamic DB2 Data Adapter.

• A CALLPGM subroutine using embedded SQL.

Generally speaking, each program has a corresponding plan or package.

A site that installs a DB2 subsystem determines the maximum number of concurrent users
(threads) the subsystem will support. Since each user requires enough virtual storage for
their application plan, this setting controls the amount of storage the site wants to allocate
to active DB2 users at any one time.

The CAF CLOSE command deallocates the DB2 thread, releasing the virtual storage for the
application plan. DB2 requires that an existing thread to a plan be closed before a thread to
another plan is opened. If a thread is closed without a subsequent OPEN operation, the
closed thread becomes inactive. The user is still connected to DB2, but not to a particular
application plan. The user (task) still owns the thread; it is not available to other users. To
release the thread, the user must disconnect completely from DB2.

Note: The term pseudo-conversational describes the type of transaction processing
provided when you use AUTOCLOSE ON COMMIT.
7-16 iWay Software

Getting Started in DB2
AUTODISCONNECT in DB2
AUTODISCONNECT completely detaches the user’s address space (or task) from DB2. This
differs from CLOSE because, after a CLOSE, the task is still connected to the DB2 subsystem
and can open a thread to another plan. After a DISCONNECT, the task must reestablish its
connection to DB2 before performing any data source work. The tasks that frequently issue
the DISCONNECT command are connected to DB2 for shorter periods of time, allowing
other tasks to connect and acquire threads as needed. However, there is significant system
overhead associated with frequently connecting and disconnecting, and the possibility
exists that no thread will be immediately available when the task attempts to reconnect.

DB2 Data Adapter Dialogue Manager Variables
All data adapter environment settings are available for display as Dialogue Manager
variables.

Note: If the length of the current setting value is greater than 12, the Dialogue Manager
variable makes only the first 12 characters available.
iWay Data Adapter Administration for MVS and VM 7-17

DB2 Data Adapter Dialogue Manager Variables
The following table shows the environment settings that are relevant to MVS, Windows NT/
2000, and UNIX:

Variable Description MVS NT UNIX

&SQLCAF CALL ATTACH FACILITY ÷

&SQLSSID SSID FOR CALL ATTACH ÷

&SQLPLANA ACTIVE PLAN FOR CALL ATTACH ÷

&SQLPLANU USER SET PLAN FOR CALL ATTACH ÷

&SQLPLANI INSTALLATION DEFAULT PLAN ÷

&SQLAUTOCLS AUTOCLOSE OPTION ÷

&SQLAUTODIS AUTODISCONNECT OPTION ÷

&SQLDBSPACE DEFAULT DBSPACE ÷

&SQLID CURRENT SQLID ÷

&SQLWRITE WRITE FUNCTIONALITY ÷ ÷ ÷

&SQLOPT OPTIMIZATION OPTION ÷ ÷ ÷

&SQLEMSG SQL ERROR MESSAGE TYPE ÷ ÷ ÷

&SQLEXPL SQL EXPLAIN OPTION ÷

&SQLQUERYNO QUERY NUMBER TO BE USED FOR
EXPLAIN

÷

&SQLDEFDATE DATA ADAPTER DEFAULT DATE TYPE ÷ ÷ ÷

&SQLRELEASE Current release of DB2 in format

Dxxx

where:

xxx

Is the release number (for
example, 230 for DB2 Version 2
Release 3).

÷

7-18 iWay Software

Getting Started in DB2
&SQLVVRRM Return from CONNECT in the form

DSNvvrrM

where:

vv

Is the Version of DB2.

rr

Is the Release.

÷

Variable Description MVS NT UNIX
iWay Data Adapter Administration for MVS and VM 7-19

DB2 Data Adapter Dialogue Manager Variables
7-20 iWay Software

CHAPTER 8

8.Getting Started in IMS

Topics:

• IMS Hierarchical Structure

• IMS Access Methods

• IMS Control Blocks

• IMS DL/I Calls

• Mapping IMS Elements to the
Server

• Mapping IMS and Server
Relationships

• Describing IMS Data Sources

• IMS Master FilesIMS Sample File
Descriptions

• IMS Access Control

• IMS SET Command

• IMS Data Adapter Optimization

• IMS Record Selection Tests

• IMS UPDATE

These topics discuss IMS and server concepts, and how IMS
elements correspond to their server counterparts. The
concepts in these topics apply to Master Files, FOCPSBs,
and joins in SQL SELECT statements.

The server requires a Master File in order to access a data
source. IMS uses several specialized control blocks for
regulating an application’s access to its data sources, and
the server requires additional information for negotiating
its way through these control blocks.

The concepts necessary for retrieving information from IMS
data sources are discussed in the following topics. Rules for
mapping these IMS concepts to the server are described in
subsequent topics.
iWay Data Adapter Administration for MVS and VM 8-1

IMS Hierarchical Structure
IMS Hierarchical Structure
A hierarchical data source is a collection of segments associated through parent-child
relationships. Each segment is a child (or dependent) of the segment directly above it in the
hierarchy and is the parent of all segments directly below it. A segment can have multiple
children or no children, but it can have only one physical parent. Segment instances of the
same type with the same parent are called twins. The root segment is the segment at the
top of the tree; it has no parent.

The following diagram depicts a hierarchical data source:

Each box represents a segment instance in the hierarchy. (Although the diagram depicts
two instances of each segment type, there may be more or fewer instances of any type.)
The numbers in the boxes indicate the order in which IMS accesses the segments when an
application requests sequential access (for situations that allow sequential access). This
ordering of segments is called the hierarchical sequence. A data source record consists of a
root segment instance along with all of its descendant segment instances in hierarchical
sequence. The hierarchical path to a segment instance consists of the segment itself and all
of its ancestors starting from the root.

A segment consists of fields. A field is the smallest logical unit of data that an application
can request.
8-2 iWay Software

Getting Started in IMS
IMS Sequence Fields
In IMS, a segment’s key field is called the sequence field; it identifies the segment. A key is
called unique if no two segments can contain the same key value.

The value of a segment’s sequence field determines its position in its chain of twins
(segments of the same type under the same parent). The primary key for an IMS data source
is the sequence field of its root segment. This key identifies and orders the records of the
data source.

In some IMS data sources, the records are physically stored in root key order. In others, the
roots are stored randomly and retrieved using a hash code (randomizing function) or an
index.

Dependent segments are always retrieved by searching sequentially from the parent to the
first instance of the child segment type; then through each occurrence of the child segment
type in order until the required instance is found. In some types of IMS data sources,
dependent segments are physically stored in order of their sequence field (if there is one);
in others, the sequence is maintained by pointers from one child to the next. However, even
in this case, the instances are initially loaded in sequence field order.

IMS Secondary Indexes
If you want to access a segment through a field that is not its sequence field (primary key),
IMS provides the option of creating a secondary index on the field. In some situations, using
a secondary index improves performance. The secondary index is itself a separate data
source. Each of its records contains a value of the field to be indexed and a pointer to the
target segment of the data source record containing that value.

When using a secondary index, IMS locates a record by first reading the index data source to
retrieve the appropriate pointer and then using the pointer to read the data data source.

IMS Logical Relations
Another way to alter the order in which IMS views and retrieves segments is through logical
relations. A logical relation associates segments from one or more data sources as logical
(virtual) parents and children. The data adapter cannot distinguish a logical data source
from a physical data source and can access both equally.
iWay Data Adapter Administration for MVS and VM 8-3

IMS Access Methods
IMS Search Fields
IMS database descriptions do not have to describe every field in the data source. They must
contain entries for all sequence fields, but other fields are optional.

When a DL/I call requests a specific segment occurrence, it instructs IMS to retrieve a
segment that contains particular values in one or more of its fields. In some cases, these
search fields are not sequence fields. In order to use them in a DL/I call, these fields must be
listed in the database description. For more information about IMS database descriptions,
see IMS Control Blocks on page 8-5.

IMS Symbolic Pointers
When IMS traverses a data source, it may follow pointers from one segment to the next. In
many cases the pointers are symbolic; that is, they are key field values rather than actual
addresses. The symbolic pointer to a segment instance (also called its concatenated key) is
the concatenation of the key values of all segments along the hierarchical path to that
segment, starting from the root. All access to dependent segments is through the root.

IMS Access Methods
IMS supports several specialized access methods for storing and retrieving segments of a
data source. These can be subdivided into sequential and direct access methods. In the
sequential methods, IMS maintains the hierarchical sequence by physically placing the
segments in sequence. In the direct methods, IMS maintains the sequence with pointers.
The data adapter supports any IMS access method that allows command codes and
qualified SSAs. The most common ones are:

• HSAM (Hierarchical Sequential Access Method). The data source is stored physically in
hierarchical sequence as on a tape. Updates require rewriting the whole data source.
No direct access is possible.

• HISAM (Hierarchical Indexed Sequential Access Method). Initial loading of the data
source is in physical sequence with the tail ends of records that are too long going into
an overflow area. All insertions after initial load are in the overflow area. There is an
index for direct access to the root segment. The sequence field or key must be unique;
that is, no two root segments can contain the same key value.

• HDAM (Hierarchical Direct Access Method). Root segments are inserted by applying a
randomizing routine to the sequence field; the value computed assigns a storage
location to the segment. Root segments are retrieved by applying the same hash code.
Descendant segments are stored independently and linked by pointers. Since the roots
are stored in a random physical sequence without an index, they cannot be accessed
sequentially in root key order.
8-4 iWay Software

Getting Started in IMS
• HIDAM (Hierarchical Indexed Direct Access Method). The data source consists of two
parts: the data data source and a separate data source that is an index on the sequence
field of the root segment. The data data source is physically loaded in hierarchical
sequence. Roots can be accessed sequentially or directly, but each direct access
requires reading the index data source. Root sequence fields must be unique; that is, no
two root segment instances can contain the same key value.

• DEDB (Data Entry Database). This is a Fast Path access method. Fast Path is an option
that provides enhanced data reliability and availability and improved response time in
exchange for limitations on the structure of a data source and on its ability to take
advantage of techniques such as secondary indexing and logical relationships. DEDBs
can have special segments called sequential dependents that segregate high volume
data and make loading the data source more efficient. DEDBs can also be subdivided
into areas. Each area contains all segment types for particular roots, thus partitioning
the data source by root key values. (This differs from data set groups that are available
for many types of data sources and that segregate particular types of segments for all
roots.) The advantages include the ability to create very high volume data sources, to
make most of the data source available even if an area is undergoing maintenance, and
to replicate areas for increased availability and problem recovery.

IMS Control Blocks
IMS uses special control blocks for describing a data source, regulating an application’s
access to data sources, and communicating with an application.

IMS Database Descriptions: The DBD
The Data Base Description (DBD) is a control block that describes the structure of a physical
or logical data source. It contains information necessary for locating particular segments,
specifies the access method and ddname allocation information, and describes the
hierarchical structure of the data source.
iWay Data Adapter Administration for MVS and VM 8-5

IMS Control Blocks
To describe the structure of the data source, the DBD contains SEGM and FIELD statements:

• SEGM statements name the segments and their parents, and specify their lengths and
pointer types.

• FIELD statements are not required for all fields in the data source. They are required for
sequence and search fields. A FIELD statement names a field, specifies its position
within the segment, describes its data type, and identifies whether it is a sequence
field. If it is a sequence field, the FIELD statement specifies whether it is unique or non-
unique.

If the data source participates in a logical relation, there may be logical child information in
the DBD.

After the actual database description, the DBD contains a DBDGEN statement that instructs
IMS to take the user-provided DBD source statements and create a load module that the
system can use. See Illustrating an IMS DBD With a Redefined Segment on page 8-51.

Defining an Application’s Access to Data Sources: The PSB
The Program Specification Block (PSB) contains information about an application program’s
view of the data source. Each view of a data source that the application can access is
described within the PSB; this description is called a Program Communication Block (PCB).
Therefore, the PSB is simply a collection of PCBs.

Within the PSB, there can be PCBs for accessing data sources (TYPE=DB) and PCBs for
teleprocessing communication and batch checkpointing (called I/O PCBs, TYPE=TP). The
PSB can contain duplicate PCBs for maintaining multiple positions within a data source or
for performing recursive joins. There can also be several different PCBs for the same data
source to provide different views or allow different types of access.

The PSB ends with a PSBGEN macro statement that contains information about the PSB,
such as its name. The PSBGEN creates a load module from the source statements. For
details, see Describing IMS Data Sources on page 8-28.
8-6 iWay Software

Getting Started in IMS
Describing a Data Source View and Communicating With IMS: The PCB
A Program Communication Block (PCB) has several functions:

• It describes a view of a data source; that is, it names the data source to be accessed (the
DBDNAME parameter), lists the segments that a program can access through that PCB
(the SENSEG statement), and names the parent of each sensitive segment (the PARENT
parameter).

• It describes the type of access to the data source that a program can have through that
PCB (the PROCOPT parameter). For example, it may limit requests to retrieval only.

• It may specify that a secondary index is to be used as the main entry point for the data
source (the PROCSEQ parameter).

• It keeps track of position within the data source; that is, it remembers which segment
was retrieved the last time the PCB was used.

• It receives a status code from IMS about the results of each call it makes to the data
source.

In the PSB, the PCBs are listed one after another prior to the PSBGEN statement. I/O PCBs
must come before data source PCBs. A segment cannot be included in a PCB unless its
parent is also included. For the root segment, PARENT=0.

A program can use all PCBs in a PSB concurrently. The program gives a name to each PCB
and defines its structure by applying a mask that allocates program variables to receive the
status information returned by IMS. Although IMS returns status information to the PCB, it
does not place the retrieved data source segment into the PCB. The segment goes into an I/
O area specified in the DL/I call (see IMS DL/I Calls on page 8-9 on page). For PCB examples,
refer to the PSB samples in Describing IMS Data Sources on page 8-28.

The following diagram illustrates the relationship between DBDs, PSBs, and PCBs.
iWay Data Adapter Administration for MVS and VM 8-7

IMS Control Blocks
IMS Key Sensitivity
All access to segments within an IMS data source proceeds from the root segment through
the hierarchical path to the desired segment. When an application has no use for the data
in a segment, but does need data from one of its children, the PCB can specify PROCOPT=K
to make the parent segment key sensitive. This gives IMS access to the key value of the
segment but instructs it not to return any data from the segment to the application.

IMS Field Level Sensitivity
A PCB can include an optional list of sensitive fields for a segment (the SENFLD statement).
If it does, IMS returns only those fields to the application, not the entire segment. This field
level sensitivity provides data independence and security. Even if the segment changes, the
PCB and application program can remain the same; also, for security purposes, only
specified fields are accessible to application programs.

IMS Status Codes
IMS stores a status code in the PCB after each DL/I call. The data adapter checks the status
code after each call to determine whether the call was successful.

IMS Key Feedback Area
After a successful call, the key feedback area in the PCB contains the concatenated key of
the retrieved segment (the keys of each segment in the hierarchical path to the retrieved
segment).

Application Control Block in IMS
An Application Control Block (ACB) is an optimized PSB that contains a combination of
information from the PSB and the DBD. ACBs are created by an ACBGEN and are used to
access online data sources.
8-8 iWay Software

Getting Started in IMS
IMS DL/I Calls
To access an IMS data source, an application program must call a special DL/I subroutine
such as ASMTDLI (Assembler to DL/I). Each DL/I call passes IMS the following arguments:

• A function code that defines the type of call. The data adapter makes only two types of
calls: GU (Get Unique) and GN (Get Next).

• The PCB to use for the call.

• The I/O area in which to put the retrieved segment.

• Segment search arguments (SSAs) that describe the desired segment. The number of
SSAs in a call depends on the level of the segment to be retrieved and the type of call.

IMS Segment Search Arguments
If you want to retrieve a specific segment or type of segment, you must tell IMS how to find
it. Do this by means of segment search arguments (SSAs).

There are two types of SSAs:

• An unqualified SSA consists of the segment name. Any segment of that segment type
satisfies the SSA.

• A qualified SSA is a Boolean expression that defines an acceptable value or range of
values for one or more fields in the segment. The fields referred to in the SSA must be
search fields; that is, they must be listed in FIELD statements in the DBD. Only segments
containing the proper values satisfy a qualified SSA.

SSAs can also include command codes that alter the way in which IMS completes the call.
For example, the FIRST command code (*F) instructs IMS to begin its search at the start of
the twin chain for that segment type, under the current parent, even if the PCB is
positioned past that point. The data adapter uses only one command code: the *U
(parentage) command code.
iWay Data Adapter Administration for MVS and VM 8-9

IMS DL/I Calls
IMS Get Calls
The data adapter retrieves data from IMS using two types of Get calls: GU (Get Unique) and
GN (Get Next).

• GU always starts from the beginning of the data source and finds the first segment that
satisfies all of the SSAs. It uses the index or hash code to locate an appropriate root
segment. The segment type named in the last SSA is the type of segment that IMS
retrieves and places in the I/O area.

• GN provides sequential retrieval. It keeps track of which segment was last retrieved (the
current data source position) and goes on from that point. It can be issued with or
without SSAs. If there are no SSAs, it retrieves the next segment listed in the PCB in
hierarchical sequence; this segment can be any type of segment. If there are SSAs, it
retrieves the next segment that satisfies all of the SSAs; the last SSA determines the
type of segment that IMS retrieves and places in the I/O area. Since HDAM roots cannot
be retrieved in root key order, using GN calls on HDAM roots retrieves them in the
random physical order in which they were loaded.

If a segment instance satisfies an SSA, but the current data source position is past that
segment in hierarchical sequence, GN will not retrieve the segment.

The data adapter also uses ISRT, REPL, DLET, GHU, and GHN calls for SQL update of IMS
databases.

For a discussion of how the data adapter creates SSAs, see IMS Access Control on page 8-76.
8-10 iWay Software

Getting Started in IMS
Mapping IMS Elements to the Server
To access an IMS data source from the server, you must describe IMS entities in server terms.
Specific syntax requirements and sample descriptions are included in Describing IMS Data
Sources on page 8-28. The following topics present an overview of the mapping concepts.

Note: The diagrams in these topics present relevant portions of DBDs, PSBs, PCBs, and
Master Files. They are not meant to contain all syntax elements or keywords.

Describing the PSB: The FOCPSB
A FOCPSB contains attributes (keyword=value pairs) that identify the PCBs in a PSB and
associate each PCB with the name of a Master File. The Master File is discussed in Describing
IMS Data Sources on page 8-28.

Associate a FOCPSB with the PSB it describes by giving them both the same name. FOCPSBs
are stored as members of a partitioned data set. The member name for a FOCPSB must be
identical to the name of the corresponding IMS PSB.

In the FOCPSB, you must provide the following for each PCB:

• The PCBNAME. This value is the name of the corresponding Master File. A blank
indicates either an I/O PCB (see IMS Control Blocks on page 8-5) or a PCB that you do not
want to access. The same PCB can be included multiple times in the PSB; each such
duplicate should use the same Master File name.

• The PCBTYPE. This value specifies the type of PCB; acceptable values are: DB for data
source PCBs, TERM for I/O PCBs, and SKIP for PCBs you will not access.

Some additional attributes, used for partitioning and concatenating PCBs, are discussed in
Describing IMS Data Sources on page 8-28.

The following diagram illustrates the correspondence between an IMS PSB and an
equivalent FOCPSB:
iWay Data Adapter Administration for MVS and VM 8-11

Mapping IMS Elements to the Server
1. Is an IMS PSB named PSB1. It contains three data source PCBs.

2. Is the corresponding FOCPSB, member PSB1 in the FOCPSB data set. This FOCPSB will
ignore the second PCB in the PSB (PCBTYPE=SKIP); it can issue a request using the first
PCB (SELECT ... FROM FILE1) and the third PCB (SELECT ... FROM MYFILE) using Master
Files FILE1 and MYFILE.

Describing the Data Source: The IMS Master File
With the IMS Data Adapter, a Master File is not necessarily a complete description of the
data source. It is a description as seen through a specific PCB. If the PCB is not sensitive to a
segment listed in the DBD, the Master File cannot include that segment. Therefore, in order
to create a Master File for the PCB, you must combine information from the DBD and the
PCB.

You do not have to describe every segment from the PCB in the Master File. However, the
portion of the hierarchy you describe must be a subtree starting from the root. In a subtree,
when you include a child segment, you must also include its parent.

The following diagram illustrates the concept of a subtree:
8-12 iWay Software

Getting Started in IMS
The following topics illustrate where each element that goes into the Master File comes
from in the IMS schema. Actual Master File syntax is discussed in Describing IMS Data
Sources on page 8-28.

In the topics that follow, you will notice that:

• An IMS field is equivalent to a field in the Master File.

• An IMS segment corresponds to a segment in the Master File.

• IMS fields that are composed of multiple elementary fields can be represented as
GROUP fields in the Master File.

• IMS segments that have multiple definitions can be represented in the Master File with
the RECTYPE attribute.

• IMS variable length segments and segments with repeating fields can be represented
with an OCCURS segment in the Master File.

Identifying the IMS Data Source
Each Master File corresponds to one PCB, and each PCB accesses one DBD. The FILENAME
value in the Master File can be any one - to eight-character name. However, for consistency
and documentation purposes, the examples in this manual specify the DBD name as the
FILENAME value in the Master File:

1. Is an IMS PSB containing a PCB for DBD1.

2. Is the FILE record of the Master File for that PCB. The FILENAME attribute has the value
DBD1.
iWay Data Adapter Administration for MVS and VM 8-13

Mapping IMS Elements to the Server
Describing IMS Segments to the Server
A Master File contains segment records to describe the hierarchy of segments. These
correspond to the SENSEG records in the PCB.

The segment record in the Master File contains the following information:

• The SEGNAME attribute. Its value is the segment name from the SENSEG record in the
corresponding PCB.

• The SEGTYPE attribute. Its value specifies whether the segment is key sensitive, and
whether the key (if there is one) is unique or non-unique. Recall that a key sensitive
segment is used only for access to lower level segments and is specified by the
parameter PROCOPT=K in the PCB. The information about a segment’s key comes from
the DBD. The FIELD record in the DBD specifies NAME=(name,SEQ,M) for a non-unique
key field, and NAME=(name,SEQ,U) or (name,SEQ) for a unique key.

The permissible SEGTYPEs are:

• The PARENT attribute. Its value is the name of the segment’s parent from the SENSEG
record in the PCB. The only difference is in the root segment. The PCB specifies
PARENT=0 for the root segment or omits the PARENT parameter. In the Master File, you
can specify the PARENT attribute of the root segment as PARENT= , or you can omit it.

SEGTYPE Definition PROCOPT=K In
PCB?

NAME=From DBD

S0 Data sensitive, no key No (name)

S or S1 Data sensitive, non-unique
key

No (name,SEQ,M)

S2 Data sensitive, unique key No (name,SEQ,U) or
(name,SEQ)

SH or SH1 Key sensitive, non-unique key Yes (name,SEQ,M)

SH2 Key sensitive, unique key Yes (name,SEQ,U) or
(name,SEQ)
8-14 iWay Software

Getting Started in IMS
The following diagram illustrates how to specify a segment record in the Master File:

1. Is the IMS DBD that the PCB is viewing. It specifies that the key for SEG1 is unique. There
is no key specified for SEG2. FLD2 is a search field but not a sequence field.

2. Is an IMS PSB that has a PCB with two sensitive segments, SEG1 and SEG2. SEG1 is the
root segment (PARENT=0) and SEG2 is a child of SEG1.

3. Is the Master File corresponding to the PCB.

SEG1 is the root, therefore the PARENT attribute can be omitted. Since the segment is
data sensitive and the sequence field is unique, SEGTYPE=S2. SEG2 is a child of SEG1,
therefore its PARENT=SEG1. Since it has no key field, SEGTYPE=S0.
iWay Data Adapter Administration for MVS and VM 8-15

Mapping IMS Elements to the Server
Describing IMS Fields to the Server
To describe data fields in the Master File, you must also consider information from both the
PCB and the DBD.

If the PCB you are describing contains SENFLD records for a segment, the Master File can
view only the fields explicitly specified in those SENFLD records.

However, if the PCB does not contain any SENFLD records for a segment, you can describe
the entire segment in the Master File. You can get information about sequence and search
fields from the DBD. To describe other fields, you may have to refer to an external
description for the segment; for example, a COBOL FD.

For each field you include in the Master File, you must specify:

• The FIELDNAME. This can be any name that complies with field naming conventions, as
described in Describing IMS Data Sources on page 8-28.

• The ALIAS. The data adapter uses the alias to distinguish between IMS sequence fields,
IMS search fields, and other fields. These designations help the data adapter produce
optimized SSAs, as described in IMS Access Control on page 8-76.

If the field is not listed in the DBD, do not specify an alias.

If the field is listed in the DBD (if it is a sequence or search field), the alias value takes the
form

IMSname.suffix

where:

IMSname

Is the field name specified in the DBD.

The suffix values are:

• The USAGE format. The USAGE format is the display format for the field.

• The ACTUAL format. The ACTUAL format describes how the data is stored in the IMS
data source. The DBD specifies this information with the TYPE and BYTES parameters in
each FIELD record. For a discussion of ACTUAL formats, see Describing IMS Data Sources
on page 8-28.

Suffix Description

KEY IMS key field.

IMS IMS search field.

HKY Key of root of an HDAM data source.
8-16 iWay Software

Getting Started in IMS
The DBD indicates the length of each segment and the length and starting position of each
listed field within a segment. The Master File need not describe all fields from a segment,
but it must include an initial subset of the segment (that is, it must start from the beginning
and not contain any gaps). You can use the BYTES and START parameters from the DBD to
determine how the fields in the segment are arranged. If you want to describe two fields
that are separated by data that you do not need, you must include a field in the Master File
occupying the unneeded space in order to avoid a gap.

The following diagram illustrates how to define FIELDNAME and ALIAS values in the Master
File for a HIDAM data source:
iWay Data Adapter Administration for MVS and VM 8-17

Mapping IMS Elements to the Server
1. Is the IMS DBD that the PCB is viewing. SEG1 has two fields listed, but the PCB is
sensitive only to the first. SEG2 has two fields listed, but they do not describe the entire
segment.

2. Is an IMS PCB. SEG1 has a SENFLD record for FLD1 limiting the view to that field alone.
SEG2 has no SENFLD records; therefore, the entire segment is available.

3. Is the corresponding Master File. In SEG1 only FLD1 is available because of the SENFLD
record in the PCB. The FIELDNAME can be any convenient name. Since this field is the
key for the segment, the alias value is the name from the IMS DBD with the suffix value
KEY appended: ALIAS=FLD1.KEY.

In SEG2, the whole segment is available since the PCB has no SENFLD records for the
segment. FLD3 is the key field; therefore its alias value is FLD3.KEY. FLD4 is a non-key
search field; its alias value is FLD4.IMS. No other fields are described in the PCB, but the
Master File defines two more fields from the segment.

IMS key fields and search fields can consist of multiple elementary fields. In the Master File,
you can break the IMS field into component parts (field redefinition) using a GROUP field.

The following diagram illustrates a group key:

1. Is a DBD. The field G is 8 bytes long and is type character.

2. Is the Master File. It defines the group as an 8-byte alpha field. It then breaks this field
down into two 4-byte alpha fields.

3. In a server session, a SELECT statement that uses the group field or its higher order
component in screening tests. If the components of the group are of different data
types, you must screen them individually.
8-18 iWay Software

Getting Started in IMS
Describing IMS Segments With Multiple Definitions to the Server
An IMS segment can have multiple definitions. For instance, a segment may contain either
shipment or order information depending on the value of one of its fields. If the field that
identifies the type of segment is at the same position in each redefinition, you can use the
RECTYPE attribute to define the different segment types in the Master File:

1. First define the non-changing portion of the segment as usual. Include a filler field for
the part that will be redefined. The field that identifies the different types must be in
the redefined portion.

2. Next, describe each redefined portion as a segment whose parent is the non-changing
segment. Do not define a SEGTYPE for these children. Describe the field that identifies
the segment type as FIELDNAME=RECTYPE in the Master File. The alias for the RECTYPE
field is the value that identifies the type of data in the segment (in this example, either
ALIAS=S, for a shipment, or ALIAS=O, for an order).

Include a filler field in each redefinition to occupy the fields that are in the non-
changing segment.

The following diagram illustrates segment redefinition in the Master File:
iWay Data Adapter Administration for MVS and VM 8-19

Mapping IMS Elements to the Server
1. Is a segment named INFO that has two definitions, one for shipment information and
one for order information. Field INFOTYPE contains the value S in those segment
instances that contain shipment data; it contains the value O in those segment
instances that represent order information.

2. Is the portion of the Master File that represents the IMS segment. It uses three
segments to describe the one IMS segment.

The parent segment, named INFO to match the IMS segment name, contains the key
field since the key is not in the redefined portion. There is also a filler field to account
for the redefined portion of the segment.

Each child segment has INFO as its parent and a null SEGTYPE value. In each child, the
field that corresponds to INFOTYPE from the DBD has FIELDNAME=RECTYPE. The ALIAS
value for the RECTYPE field in each child segment is the INFOTYPE value that identifies
that type of segment: S for the SHIP segment type and O for the ORDER segment type.
(Each segment type also has a filler to occupy the positions of the fields that are
described in the parent segment, and each segment type describes additional fields
that it needs for either order or shipment data.)

Describing IMS Data Sources on page 8-28 explains how to describe a segment type
that allows multiple RECTYPE values.
8-20 iWay Software

Getting Started in IMS
Describing Variable Length IMS Segments to the Server
In an IMS data source, segments can have repeating fields or repeating groups of fields. The
number of repetitions can be fixed, can depend on the value of a field from the parent
segment or from the non-repeating portion of the variable segment, or may have to be
calculated from the segment length. Note that this type of segment is not supported for
SQL updates of IMS databases.

In the Master File, you describe a segment with repeating fields by defining each repeating
field (or group) as a separate segment whose parent is the non-repeating portion of the
segment. The child segment definition has no SEGTYPE, but it includes the OCCURS
attribute to specify how many times the field repeats. Permissible values are:

If the repeating field is not at the end of the segment, you must also identify its position
within the segment.

OCCURS= Description

n Is the number of times the field repeats in the segment.

fieldname Is the name of a field whose value indicates the number of times the
field repeats in the segment.

VARIABLE Indicates that the number of repetitions must be computed from
the length of the segment. In this case, the segment must contain a
counter field as its first field; the counter field’s alias in the Master
File must be

IMSname.CNT
iWay Data Adapter Administration for MVS and VM 8-21

Mapping IMS Elements to the Server
The following diagram illustrates an OCCURS segment in the Master File. Describing IMS
Data Sources on page 8-28 includes examples for each value of the OCCURS attribute.

1. Is an IMS segment with one key field and one repeating field.

2. Are the equivalent segments in the Master File. Segment SEG2 contains the non-
repeating portion of the IMS SEG2 segment. Segment SEG3 contains the repeating
field; it specifies OCCURS=5. SEG3 has no SEGTYPE value.

Describing an IMS Secondary Index to the Server
Using IMS secondary indexes, you can retrieve records in order of a field other than the key
field. (A secondary index is itself a data source with its own DBD.) The DBD for a data source
that uses a secondary index includes an XDFLD statement that assigns a field name to the
index.

If a PCB includes the parameter

PROCSEQ=indexDBDname

the named index is used as the main entry point into the data source.

One Master File can describe the primary index and multiple secondary indexes. You must
also include a record for each secondary index in the FOCPSB. Then, when you issue a
SELECT statement, the data adapter inspects all key fields and secondary indexes to select
the optimal retrieval path based on the selection criteria in the request.

In order to access a data source through a secondary index, the IMS PSB must contain a PCB
that defines the index as the main entry point into the data source. The PCB does this by
identifying the DBD for the index in the PROCSEQ parameter (recall that a secondary index
is, itself, an IMS data source). Of course, the data adapter requires the IMS PSB to also
include a PCB for the normal entry point into the data source; this PCB does not include a
PROCSEQ parameter.
8-22 iWay Software

Getting Started in IMS
The FOCPSB has a one-to-one correspondence with the PSB. The FOCPSB entry that
corresponds to the normal entry point into the data source supplies the name of the Master
File. Each FOCPSB entry that corresponds to a secondary index PCB supplies the name of
the index from the XDFLD record of the DBD.

The following diagram illustrates the IMS PSB and its corresponding FOCPSB:

1. Is the IMS DBD for the PATDB01 data source. The LCHILD record for the secondary index
provides the name of the DBD for the index. The corresponding XDFLD record names
the index.

2. Is an IMS PSB that has PCBs for the PATDB01 data source. The first PCB for PATDB01 does
not include a PROCSEQ parameter, therefore it uses the normal entry point into the
data source. The second PCB for PATDB01 includes the parameter PROCSEQ=PATDBIX1.
This indicates that a secondary index is the main entry point into the data source
through this PCB and that the index is described by the DBD named PATDBIX1.

3. Is the FOCPSB for the IMS PSB. The entry that corresponds to the first PCB supplies the
name of the Master File, PCBNAME=PATINFO. The entry that corresponds to the PCB for
the secondary index provides the name of the index, PCBNAME=IXNAME.

To use a secondary index and the Auto Index Selection feature in the Master File, you must:

• Describe all fields listed in the DBD as key or search fields, that is, with the suffix KEY,
HKY, or IMS.

• Describe the rest of the IMS segment with field definitions or filler fields.

• Describe all secondary index fields as group fields at the end of the root segment.
iWay Data Adapter Administration for MVS and VM 8-23

Mapping IMS Elements to the Server
• Define the ALIAS of the group field with the suffix SKY (Secondary Index Key) and with
the name assigned to the index by the XDFLD record in the DBD; that is,

ALIAS=XDFLDname.SKY

where:

XDFLDname

Is the value of the NAME parameter in the XDFLD record of the DBD.

• Define the fields that actually comprise the secondary index as subordinate fields in the
group. You can find the names of these fields in the SRCH parameter of the XDFLD
record in the DBD. You already described these fields once in the Master File since they
are sequence or search fields. When you now describe them again as subordinate
fields, you must assign them a new FIELDNAME not already used in the Master File;
their ALIAS values must be the FIELDNAME values you previously gave them.

The following diagram illustrates how to describe a secondary index in the Master File:
8-24 iWay Software

Getting Started in IMS
1. Is the IMS DBD. It describes one secondary index. The record assigns the name IXNAME
to the index. The SRCH parameter indicates that the IXNAME index searches on the
fields LNAME and FNAME.

2. Is the corresponding Master File. In the GROUP record at the end of the Master File, the
ALIAS value is the name of the index from the DBD with the suffix SKY appended.

The subordinate fields in the group were previously assigned field names in the Master
File. The ALIAS value for each subordinate field in the group definition is the previously-
assigned FIELDNAME. The FIELDNAME in the subordinate field entry is a new name.

The data adapter now has the information necessary for determining the best access path
for a particular request. Consider the following request:

SELECT LAST_NAME,FIRST_NAME,SALARY,ADMIT_DATE
FROM PATINFO
WHERE LAST_NAME = ‘SMITH’;

Since the field referenced in the WHERE condition is the high-order part of an index, the
data adapter generates a qualified SSA and retrieves data using the PCB that permits access
through the index.

Secondary index definitions for this data source are illustrated in Describing IMS Data
Sources on page 8-28.

Mapping IMS and Server Relationships
The join is an important technique for reporting from any database system. A join enables
you to report from more than one data source at the same time by matching values of fields
from each data source.

With most data adapters, you can join separate data sources or files that share a common
field by describing each file as a segment in one multi-structure Master File. This embedded
join technique is not available with the IMS Data Adapter, since each Master File must
describe one PCB and each PCB must describe one DBD.

The following topics describe the techniques available for relating separate IMS data
sources:

• IMS Logical Relationships

• Alternating Between IMS Data Sources

• SQL Joins in IMS
iWay Data Adapter Administration for MVS and VM 8-25

Mapping IMS and Server Relationships
IMS Logical Relationships
In IMS, a PCB can describe a logical data source, and a logical DBD can describe a
relationship between multiple IMS data sources. Therefore, a Master File can describe a join
between separate IMS data sources if there is a PCB for a DBD that describes the join.

The data adapter cannot distinguish between a DBD for a physical data source and a DBD
for a logical data source. You create the Master Files using identical techniques and
attributes.

Alternating Between IMS Data Sources
The PSB provides the ability to report from separate IMS data sources. The PSB can contain
PCBs for multiple data sources, and an application can use all PCBs from a PSB. This is not a
join, however, since there is no automatic matching of common field values from the
separate data sources. In fact, the data sources do not have to be related in any way.
8-26 iWay Software

Getting Started in IMS
SQL Joins in IMS
The data adapter supports SQL SELECT statements for joining separate data sources. You
can issue a SELECT to join IMS data sources that have PCBs in the same PSB. In fact, with the
appropriate data adapters installed, you can implement SELECTs between IMS data sources
and non-IMS data sources or files (for example, DB2 tables, MODEL 204 files, and FOCUS
data sources).

The data sources to be selected must have at least one field that shares common values. In
order to select from an IMS data source, you must use the key field (or secondary index
field) in the WHERE clause of the target root segment.

The following diagram illustrates a SELECT statement between separate IMS data sources:

1. Shows two IMS DBDs. DBD1 has a field called SOCSEC that is not a key and not in the
root segment. DBD2 has a field called SSN that shares the same values as SOCSEC. The
field SSN is the root key of DBD2.

2. Is a PSB that has PCBs for DBD1 and DBD2. Each PCB is sensitive to the segment
containing the shared field.

3. Is the FOCPSB. It associates the first PCB with Master File FILEA and the second PCB with
Master File FILEB.

4. In a server session, a SELECT statement that joins two Master Files. Notice that the to
field in the WHERE clause is a key in the root segment.
iWay Data Adapter Administration for MVS and VM 8-27

Describing IMS Data Sources
Describing IMS Data Sources
The following topics describe the IMS data source.

• FOCPSBs

• Master Files

• Creating virtual fields

• Access Files

• Sample file descriptions

These topics explain the rules for making an IMS data source accessible to the server. In IMS,
a PSB regulates an application’s authority to access data sources. The PSB consists of PCBs.
Each PCB describes one view of one data source that the program can access. You must
create file descriptions that describe these structures to the server before you can use the
server to access an IMS data source. You select the PSB during your session, either by
issuing a SET command in a server profile or stored procedure or by creating an Access File
to select the PSB.

FOCPSBs in IMS
An IMS PSB consists of PCBs. Each PCB represents a view of an IMS data source. A FOCPSB
describes a PSB to the server and associates a Master File with each PCB in the PSB.
Optionally, the FOCPSB can also partition and concatenate PCBs.

PSBs are stored as members of a partitioned data set. FOCPSBs are also stored as members
of a partitioned data set. The member name for a FOCPSB must be identical to the member
name of its corresponding PSB.

A FOCPSB is a comma-delimited free format file that consists of attributes (keyword=value
pairs). The rules for declarations are:

• Each declaration must begin on a separate line and be terminated by a comma and
dollar sign (,$). Text appearing after the comma and dollar sign is treated as a comment.

• Certain attributes are required; the rest are optional.
8-28 iWay Software

Getting Started in IMS
Required FOCPSB Attributes
The required FOCPSB attributes describe the PSB to the server and associate a Master File
with each PCB you access.

Additional attributes for partitioning and concatenation of PCBs are discussed in Extended
FOCPSB Attributes in IMS on page 8-31.

Syntax How to Identify the Header Record in IMS

Each FOCPSB starts with a header record.

FOCPSB=EXTENDED [,PL1=YES] ,$

where:

EXTENDED

Indicates that the FOCPSB is in comma-delimited format.

PL1=YES

Indicates that the PSB was created for a PL/I application program. You must include this
attribute when the IMS PSB specifies LANG=PLI; otherwise, omit it.

Note: Code the attribute as shown, with the numeric digit 1 in PL1 and the value YES.

 Code the attribute as shown, with the numeric digit 1 in PL1 and the value YES.

Syntax How to Identify the PCB Record in IMS

Each PCB in the PSB must have a corresponding record in the FOCPSB. The order of PCB
records in the FOCPSB must correspond to the order of the PCBs in the PSB.

Note: If any PCB in the PSB includes the attribute LIST=NO, do not include a corresponding
record for that PCB in the FOCPSB.

PCBNAME=mfdname, PCBTYPE=DB [,LOWVALUE=value1] [,HIGHVALUE=value2] ,$
PCBNAME=blank, PCBTYPE={TERM|SKIP} [,LOWVALUE=value1] [,HIGHVALUE=value2]
,$

where:

mfdname

Is the 1- to 8-character name of the Master File for the corresponding database PCB
(PCBTYPE=DB). To report from the PCB, specify:
SELECT FROM mfdname

blank

Applies when no Master File is necessary (see TERM or SKIP for details).
iWay Data Adapter Administration for MVS and VM 8-29

Describing IMS Data Sources
TERM

Indicates that the corresponding PCB is an I/O PCB. (You need an I/O PCB to connect to
IMS online through a teleprocessing monitor such as IMS/DC.) All I/O PCBs must be
listed before any data source PCB. Since no Master File is necessary, PCBNAME is blank.

Note: If the IMS PSB specifies CMPAT=YES, an I/O PCB is automatically generated at the
top of the PSB for batch checkpointing. In this case, you must add an additional I/O PCB
at the top of the FOCPSB.

SKIP

Indicates that you will not access the corresponding PCB. Since no Master File is
necessary, PCBNAME is blank.

value1,value2

Are used for partitioning. For a complete discussion, see Extended FOCPSB Attributes in
IMS on page 8-31.

A PSB can have duplicate PCBs that provide identical views of an IMS data source. Give each
of these identical PCBs the same PCBNAME value in the FOCPSB.

The following is an IMS PSB named TSTPSB01. It has two data source PCBs that each access
the PATDB01 data source, the first through the primary index, and the second through a
secondary index named IXNAME. For information on describing secondary indexes in the
FOCPSB, see Using an IMS Secondary Index on page 8-46.

PCB TYPE=TP,MODIFY=YES,EXPRESS=YES
PCB TYPE=TP,EXPRESS=NO,MODIFY=YES,SAMETRM=YES
PCB TYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=9
SENSEG NAME=PATINFO,PARENT=0
PCB TYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=9,PROCSEQ=PATDBIX1
SENSEG NAME=PATINFO,PARENT=0
PSBGEN LANG=COBOL,PSBNAME=TSTPSB01,CMPAT=YES
END

The corresponding FOCPSB is:

FOCPSB=EXTENDED,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME=PATINFO, PCBTYPE=DB,$
PCBNAME=IXNAME , PCBTYPE=DB,$
8-30 iWay Software

Getting Started in IMS
Extended FOCPSB Attributes in IMS
IMS limits the size of its data sources. A site that needs a larger data source may be able to
create several smaller data sources by partitioning the large data source based on root key
values.

Using extended FOCPSB attributes, you can describe a partition to the server, describe how
to concatenate the parts, and assign a name to the concatenated PCB. When you issue a
request, you can report from the concatenated PCB name or from any of the individual
partitions, depending on the file name you reference in the request.

Syntax How to Describe a Partition in the FOCPSB

A partition assigns each record to a specific data source depending on its root key value.
The first partition contains records with the lowest key values; the next partition contains
records with higher key values, and so on; the last partition contains records with the
highest key values. Each partition is a separate IMS data source and, therefore, has a
separate PCB in the PSB. Partitioning is not supported for HDAM data sources.

To describe the key range in each partition to the server, add the LOWVALUE and
HIGHVALUE attributes to the appropriate PCB records in the FOCPSB.

PCBNAME=mfdname, PCBTYPE=DB, LOWVALUE={value1|0}, HIGHVALUE={value2|FF}
,$

where:

mfdname

Is the name of the Master File for one partition of the large data source. (Since the
partition is a separate data source with its own DBD, it needs its own PCB and Master
File.)
iWay Data Adapter Administration for MVS and VM 8-31

Describing IMS Data Sources
value1

Is the lowest key value, in alphanumeric format, in the partition accessed with Master
File mfdname. The default value is 0.

value2

Is the highest key value, in alphanumeric format, in the partition accessed with Master
File mfdname. The default value is hexadecimal FF.

Note:

• The LOWVALUE and HIGHVALUE attributes are ignored if you do not define a
corresponding concatenation of the PCBs.

• The number of partitions you can define for a data source is limited by the number of
PCBs in the PSB.

• The partitioning field must be the key of the root segment.

• The partitioning field must have an alphanumeric format.

If the partitioning field is a group composed of multiple subfields, each subfield value must
be alphanumeric, and you must specify the concatenated subfield values in the LOWVALUE
and HIGHVALUE attributes. For example, if the root key low value is composed of F1=AAAA,
F2=88, and F3=BBB, then LOWVALUE=AAAA88BBB.

How to Identify a FOCPSB Data Set on page 8-34 shows a sample FOCPSB with partitioning.

Syntax How to Describe a Concatenated PCB in the FOCPSB

In a FOCPSB, you can concatenate individual PCBs by assigning a name to the
concatenation and issuing a request against it.

The PCBs that you concatenate do not have to be partitioned; that is, their FOCPSB records
do not have to include the LOWVALUE and HIGHVALUE attributes. However, if they do
include the partitioning information, the data adapter can examine the request and
determine which PCBs satisfy the request. Without the partitioning information, the data
adapter must access every PCB that participates in the concatenation.
8-32 iWay Software

Getting Started in IMS
To concatenate PCBs, include a CONCATNAME record after all PCBNAME records in the
FOCPSB. The syntax is

CONCATNAME=cname, USE=mfd1/mfd2/.../mfdi ,$

where:

cname

Is the concatenation name. You can issue a request from the concatenated PCBs using
the syntax
SELECT FROM cname

The CONCATNAME record can span more than one line. However, you cannot split an
individual Master File name between two lines.

mfd1,...,mfdi

Are Master File names from the individual PCBNAME records in the FOCPSB. The key
fields for all PCBs you concatenate must be the same length and type. You can issue a
request from an individual PCB by referencing its individual Master File name in the
request. For example,

SELECT FROM mfd1

Example Concatening Partitioned PCBs

The following example illustrates how to concatenate partitioned PCBs:

FOCPSB=EXTENDED,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME=EMPDB01, PCBTYPE=DB, LOWVALUE=000000001, HIGHVALUE=000001667,$
PCBNAME=EMPDB02, PCBTYPE=DB, LOWVALUE=000001668, HIGHVALUE=000003334,$
PCBNAME=EMPDB03, PCBTYPE=DB, LOWVALUE=000003335, HIGHVALUE=000005000,$
CONCATNAME=EMPDBJ, USE=EMPDB01/EMPDB02/EMPDB03, $

Consider the following request. (The key field is named SSNALPHA):

SELECT SSNALPHA ...
FROM EMPDBJ
WHERE SSNALPHA = ‘000001775’;

The data adapter satisfies the request using the EMPDB02 PCB only. If the WHERE clause
had requested key values less than 000001775 (rather than equal to 000001775), the data
adapter would have used the EMPDB01 and EMPDB02 PCBs.
iWay Data Adapter Administration for MVS and VM 8-33

Describing IMS Data Sources
For the corresponding DBD and Master File, see IMS Sample File Descriptions on page 8-61.

Note:

• If a retrieval request has no WHERE clause, or if the WHERE clause references a non-key
field, the data adapter accesses all PCBs.

• If any PCB listed in a concatenation lacks the LOWVALUE and HIGHVALUE key range
specification, that PCB always participates in the retrieval.

Syntax How to Identify a FOCPSB Data Set

Each FOCPSB is stored as a member of a partitioned data set (PDS); by convention, the
FOCPSB data set is named

qualif.FOCPSB.DATA

where:

qualif

Is the high-level qualifier used at your site for the server production libraries.

The member name for a FOCPSB within its PDS must be identical to the member name of
the corresponding IMS PSB within its PDS. IMS PSB library names have the form

prefix1.prefix2.PSBLIB

or

prefix1.prefix2.ACBLIB
8-34 iWay Software

Getting Started in IMS
IMS Master Files
Each Master File that provides access to an IMS data source describes the segments and
fields that are available through one IMS PCB.

Note: You do not have to describe every segment from the PCB in the Master File. However,
the portion of the hierarchy you describe must be a subtree starting from the root. Any
segment or field that you do not describe in the Master File remains invisible to the server.

Reporting costs are largely a function of the volume of data transferred. Therefore, requests
issued through the data adapter are efficient and cost effective, because only segments
referenced in your request are retrieved.

In a Master File, you can describe up to 64 segments across 15 levels. The cumulative length
of all fields across all segments cannot exceed 12,000 bytes (an IMS restriction). How to
Specify IMS Field Attributes on page 8-39 contains additional information about this limit.

Each Master File is stored as a member of a Master File PDS. The member name for a Master
File must be the name assigned to that Master File in the FOCPSB record for the
corresponding PCB (see Required FOCPSB Attributes on page 8-29). At run time, the Master
File data set is allocated to ddname MASTER.

A Master File consists of file, segment, and field declarations. Rules for declarations are:

• Each declaration must begin on a separate line and be terminated by a comma and
dollar sign (,$). Text appearing after the comma and dollar sign is treated as a comment.

• A declaration can span as many lines as necessary as long as no attribute=value pair is
separated. Commas separate attribute=value pairs.

Syntax How to Identify Master Files for IMS

Each Master File begins with a file declaration that names the file and describes the type of
data source—an IMS data source in this case. The file declaration has two attributes,
FILENAME and SUFFIX.

FILE[NAME]=name, SUFFIX=IMS [,$]

where:

name

Is any 1- to 8-character name.

IMS

Indicates that the IMS Data Adapter is required for data retrieval.
iWay Data Adapter Administration for MVS and VM 8-35

IMS Master Files
Syntax How to Specify IMS Segment Attributes

Each IMS segment described in a Master File requires a segment declaration that consists of
at least two attributes, SEGNAME and SEGTYPE. The SEGNAME value is the name of the
corresponding IMS segment. The SEGTYPE value identifies the segment’s characteristics.

SEGNAME=segname, SEGTYPE=segtype [,PARENT=parent] [,$]

where:

segname

Is the 1- to 8-character IMS segment name from the NAME parameter of the SENSEG
record in the IMS PCB.

segtype

Identifies the segment’s characteristics. Possible values are:

S0 indicates that the segment is data sensitive and has no key.

S or S1 indicates that the segment is data sensitive and has a non-unique key.

S2 indicates that the segment is data sensitive and has a unique key.

SH or SH1 indicates that the segment is key sensitive and has a non-unique key.

SH2 indicates that the segment is key sensitive and has a unique key.

parent

Is the name of the parent segment from the IMS data source. Its value comes from the
PARENT parameter of the SENSEG record in the IMS PCB.

SEGNAME in IMS
The SEGNAME attribute identifies the IMS segments you can access. The SEGNAME value is
the name of the IMS segment from the SENSEG record in the PCB.

The server retrieves segments in top-to-bottom left-to-right sequence as described by the
Master File. Therefore, the order of segments in the Master File should be the same as their
order in the PCB to maintain the correct hierarchical sequence.
8-36 iWay Software

Getting Started in IMS
SEGTYPE in IMS
The SEGTYPE attribute:

• Identifies the characteristics of the segment’s key field. A segment can have a unique
key, a non-unique key, or no key.

If a segment has a unique key, at least one FIELD record in the DBD must specify
NAME=(fieldname,SEQ,U) or NAME=(fieldname,SEQ). Similarly, if the segment has a
non-unique key, at least one FIELD record in the DBD must specify
NAME=(fieldname,SEQ,M). If no FIELD record in the DBD specifies a SEQ attribute, the
segment has no key. The key referred to by the SEGTYPE attribute may actually be a
secondary index (see Using an IMS Secondary Index on page 8-46).

The characteristics of the segment’s key determine the types of SSAs and the number
of DL/I calls the data adapter must issue to satisfy a retrieval request. To handle keys
made up of multiple fields, describe the multiple fields as a group in the Master File (for
details, see How to Issue a GROUP Field in IMS on page 8-43).

• Identifies whether the data from the segment can be retrieved (data sensitive) or if only
the segment’s key is accessible (key sensitive). For a key sensitive segment, the SENSEG
record in the PCB includes the parameter PROCOPT=K. Key sensitive segments are used
for access to lower level segments.
iWay Data Adapter Administration for MVS and VM 8-37

IMS Master Files
The following chart lists the valid SEGTYPE values:

PARENT in IMS
The PARENT attribute identifies the segment’s parent in the hierarchy. It appears in the
PARENT parameter of the SENSEG record in the PCB. The only exception is in the root
segment, where the PCB either omits the PARENT parameter or specifies PARENT=0. In the
Master File, you can specify the PARENT attribute of the root segment as PARENT= , or you
can omit it.

SEGTYPE Definition PROCOPT=K
In PCB?

NAME= From DBD

S0 Data sensitive, no key No (name)

S or S1 Data sensitive, non-unique
key

No (name,SEQ,M)

S2 Data sensitive, unique key No (name,SEQ,U) or
(name,SEQ)

SH or SH1 Key sensitive, non-unique
key

Yes (name,SEQ,M)

SH2 Key sensitive, unique key Yes (name,SEQ,U) or
(name,SEQ)
8-38 iWay Software

Getting Started in IMS
Syntax How to Specify IMS Field Attributes

Each segment consists of one or more fields. The IMS DBD contains FIELD declarations for
all sequence (key) and search fields, but other fields are optional.

If the PCB you are describing contains SENFLD records for a segment, the Master File can
view only fields explicitly specified in those SENFLD records.

However, if the PCB does not contain any SENFLD records for a segment, you can describe
the entire segment in the Master File. You can get information about sequence and search
fields from the DBD. To describe other fields, you may have to refer to an external
description of the segment, for example, a COBOL FD.

The Master File need not describe all fields from a segment, but it must include an initial
subset of the segment (that is, it must start from the beginning and not contain any gaps).

To describe a field in the Master File, you must specify the primary attributes FIELDNAME,
ALIAS, USAGE, and ACTUAL. These attributes are discussed in this topic. Note that the data
adapter does not support the MISSING attribute.

FIELD[NAME]=field,[ALIAS=]alias,[USAGE=]display,[ACTUAL=]imsformat ,$

where:

field

Is a 1- to 66-character field name. In requests, the field name can be qualified with the
Master File and/or segment name. Although the qualifiers and qualification characters
do not appear in the Master File, they count toward the 66-character maximum.

alias

Is the alias for a type of field. Possible values are:

imsfield.KEY, the alias for a field that is an IMS key field. Form the alias by appending
the suffix KEY to the name of the IMS field.

imsfield.IMS, the alias for a field that is an IMS search field. Form the alias by
appending the suffix IMS to the name of the IMS field.

imsfield.HKY, the alias for a field that is the key of the root segment in an HDAM data
source. Form the alias by appending the suffix HKY to the name of the IMS field.

display

Is the server display format for the field.

imsformat

Is the server definition of the IMS field format and length (n).
iWay Data Adapter Administration for MVS and VM 8-39

IMS Master Files
You can omit the ALIAS, USAGE, and ACTUAL keywords from the field declaration if the
values are specified in the standard order (FIELD, ALIAS, USAGE, ACTUAL). For example, the
following declarations are equivalent:

FIELD = YEAR, ALIAS=, USAGE=A2, ACTUAL=A2,$
FIELD = YEAR, ,A2, A2,$

FIELD NAME in IMS
Field names can consist of a maximum of 66 alphanumeric characters. IMS field names are
acceptable values if they meet the following naming conventions:

• Names can consist of letters, digits, and underscore characters. Special characters and
embedded blanks are not advised.

• The name must contain at least one letter.

• Duplicate field names (the same field names and aliases) within a segment are not
permitted.

Since field names appear as default column titles for reports, select names that are
representative of the data.

Note: You can only specify field names in an SQL request. You can not specify the ALIAS
name.

ALIAS in IMS
The ALIAS value in the Master File distinguishes between fields that are defined in the IMS
DBD and fields that are not defined to IMS. The data adapter uses this information in
constructing DL/I calls to IMS.

If a field name in a WHERE clause is a sequence or search field, the data adapter may be able
to create an SSA that instructs IMS to apply the screening test and return the appropriate
records to the server. If the field is not defined in the DBD, the data adapter must retrieve all
records sequentially from IMS so that the server can screen them.

Note: In certain cases, the data adapter can instruct IMS to screen values based on a
secondary index. Using an IMS Secondary Index on page 8-46 describes the technique for
taking advantage of a secondary index.
8-40 iWay Software

Getting Started in IMS
The ALIAS value for a field defined in the DBD is composed of:

• The name of the field as specified in the IMS DBD (1- to 8-characters in length).

• A separation character, the period (.).

• A suffix value that describes whether the field is a sequence field (suffix KEY), a search
field (suffix IMS), or the key of the root segment of an HDAM database (suffix HKY).

Except for certain types of control field entries (for example, ORDER and RECTYPE), fields
not defined in the DBD should not be assigned ALIAS names. For more information on
ORDER and RECTYPE control fields, see Segment Redefinition in IMS: The RECTYPE Attribute
on page 8-50.

USAGE in IMS
The USAGE attribute indicates the display format of the field. An acceptable value must
include the field type and length and may contain edit options. The server uses the USAGE
format for data display on reports. All standard USAGE formats (A, D, F, I, P) are available.

ACTUAL in IMS
The ACTUAL attribute indicates the server representation of IMS field formats.

For fields defined in the DBD (sequence and search fields), use the format specified in the
DBD.

Use the following chart as a guide for describing ACTUAL formats of those fields not
defined in the DBD:

COBOL
Format

COBOL
PICTURE

Bytes of
Storage

ACTUAL Format USAGE Format

DISPLAY X(4) 4 A4 A4

DISPLAY S99 2 Z2 P3

DISPLAY 9(5)V9 6 Z6.1 P8.1

DISPLAY 99 2 A2 A2

COMP S9 4 I2 I1

COMP S9(4) 4 I2 I4

COMP S9(5) 4 I4 I5

COMP S9(9) 4 I4 I9

COMP-1 - 4 F4 F6
iWay Data Adapter Administration for MVS and VM 8-41

IMS Master Files
Note: The USAGE lengths shown are minimum values. You can make them larger and add
edit options. You must allow space for all possible digits, a minus sign for negative
numbers, and a decimal point in numbers with decimal digits.

The cumulative length of all fields, across all segments, cannot exceed 12K bytes.

The following example illustrates the DI21PART Master File that provides access to the
DI21PART data source.

FILE=DI21PART ,SUFFIX=IMS,$
SEGNAME=PARTROOT ,PARENT=,SEGTYPE=S2,$
 FIELD=PARTKEY ,ALIAS=PARTKEY.HKY ,USAGE=A17 ,ACTUAL=A17 ,$
 FIELD=SKIP1 ,ALIAS= ,USAGE=A33 ,ACTUAL=A33 ,$
SEGNAME=STANINFO ,PARENT=PARTROOT,SEGTYPE=S2,$
 FIELD=STANKEY ,ALIAS=STANKEY.KEY ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=SKIP2 ,ALIAS= ,USAGE=A83 ,ACTUAL=A83 ,$
SEGNAME=STOKSTAT ,PARENT=PARTROOT,SEGTYPE=S2,$
 FIELD=STOCKEY ,ALIAS=STOCKEY.KEY ,USAGE=A16 ,ACTUAL=A16 ,$
 FIELD=SKIP3 ,ALIAS= ,USAGE=A124 ,ACTUAL=A124 ,$
SEGNAME=CYCCOUNT ,PARENT=STOKSTAT,SEGTYPE=S2,$
 FIELD=CYCCKEY ,ALIAS=CYCCKEY.KEY ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=SKIP4 ,ALIAS= ,USAGE=A23 ,ACTUAL=A23 ,$
SEGNAME=BACKORDR ,PARENT=STOKSTAT,SEGTYPE=S2,$
 FIELD=BACKEY ,ALIAS=BACKEY.KEY ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=SKIP5 ,ALIAS= ,USAGE=A65 ,ACTUAL=A65 ,$

COMP-2 - 8 D8 D15

COMP-3 9 1 P1 P1

COMP-3 S9V99 2 P2 P5.2

COMP-3 9(4)V9(3) 4 P4 P8.3

FIXED
BINARY(7)
(COMP-4)

B or XL1 4 I4 I7

COBOL
Format

COBOL
PICTURE

Bytes of
Storage

ACTUAL Format USAGE Format
8-42 iWay Software

Getting Started in IMS
Syntax How to Issue a GROUP Field in IMS

IMS fields can consist of multiple elementary fields. In the Master File, you can break the IMS
field into component parts using a GROUP field.

The GROUP record in the Master File describes the combined elementary fields. FIELD
records immediately following the GROUP record describe the individual elementary fields.

Each element of the group can have a different format. However, retrieval is more efficient if
each element’s USAGE format is of the same type (for example, alphanumeric or packed) as
its ACTUAL format; the lengths may differ.

GROUP=gname, ALIAS=alias, USAGE=An, ACTUAL=Am,$

 FIELD=fld1,,use1,act1,$
 .
 .
 .
 FIELD=fldn,,usen,actn,$

where:

gname

Is the group name. It can be any name that complies with field naming conventions.

alias

Is the IMS field name from the DBD if the group field is a sequence or search field.
Possible values are:

imsfield.KEY is the alias for a field that is an IMS key field. Form the alias by
appending the suffix KEY to the name of the IMS field.

imsfield.IMS is the alias for a field that is an IMS search field. Form the alias by
appending the suffix IMS to the name of the IMS field.

imsfield.HKY is the alias for a field that is the key of the root segment in an HDAM
data source. Form the alias by appending the suffix HKY to the name of the IMS field.

Note: The keyword ALIAS is required.
iWay Data Adapter Administration for MVS and VM 8-43

IMS Master Files
An

Is the USAGE format for the GROUP. It must be alphanumeric and its length must count
all F fields as length 4, all D fields as length 8, and all integer fields as length 4,
regardless of the length specified in the ACTUAL format. For alphanumeric fields,
USAGE length must equal ACTUAL length. For P (packed) fields, the length depends on
the USAGE of the packed field:

Am

Is the ACTUAL format for the GROUP. Its length is the sum of the lengths of the IMS
fields.

fld1,...,fldn

Are field names for the individual elements that compose the group.

use1,...,usen

Are USAGE formats for the individual elements. For efficient retrieval, each individual
USAGE format must be of the same data type as its corresponding ACTUAL format, but
their lengths can differ.

act1,...,actn

Are ACTUAL formats for the individual elements. For efficient retrieval, each individual
USAGE format must be of the same data type as its corresponding ACTUAL format, but
their lengths can differ.

USAGE of Packed Field Length for GROUP USAGE

Pn or Pn.d, n≤15 8

P16 8

P16.d 16

Pn or Pn.d, 16<n≤31 16
8-44 iWay Software

Getting Started in IMS
Example Defining a Group Key

The following is an example of a group key definition in the Master File:

GROUP=G1, ALIAS=FILEKEY.KEY, USAGE=A16, ACTUAL=A11 ,$
 FIELD=F1,,A4,A4,$
 FIELD=F2,,P6,P3,$
 FIELD=F3,,I9,I4,$

The GROUP in the example describes an IMS key named FILEKEY that is 11 bytes long and
consists of a 4-byte alphanumeric field, a 3-byte packed number, and a 4-byte integer.

The ACTUAL length of the GROUP is 11 (4+3+4).

The USAGE length of the GROUP is 16 (4+8+4) because it counts the packed field as 8.

Since the group components are of mixed data types, you must use individual fields in the
WHERE expression of the server query.

WHERE F1 = ABCD
WHERE F1 BETWEEN A AND B
WHERE F2 = 245

If you reference either the group or the first elementary field from the group in your
request, the data adapter generates qualified SSAs in its DL/I calls for retrieval. Thus, IMS
does the screening and returns the segments that pass the screening test back to the
server.

However, if you reference an elementary field that is not the first field in the group, the
server constructs DL/I calls to retrieve the segments sequentially, and then the server
applies the screening test to the returned data.

IMS Access Control on page 8-76 contains a detailed explanation of screening conditions
and SSA generation.

Note: The data adapter does not support a group field within a group field. You may be
able to use DEFINE fields in the Master File instead.
iWay Data Adapter Administration for MVS and VM 8-45

IMS Master Files
Using an IMS Secondary Index
Using IMS secondary indexes, you can retrieve records in order of a field other than the key
field. (A secondary index is itself a data source with its own DBD.) The DBD for a data source
that uses a secondary index includes an XDFLD statement that assigns a field name to the
index.

If a PCB includes the parameter

PROCSEQ=indexDBDname

the named index is used as the main entry point into the data source.

One Master File and FOCPSB can describe all primary and secondary indexes for a data
source. Then, given a request, the data adapter can examine all record selection tests to
determine the best access path into the data source. The data adapter can take advantage
of this Auto Index Selection feature if:

• The PSB includes a PCB for each index you may need to access. Each such index PCB
must contain a

PROCSEQ=indexDBDname

parameter that identifies the index DBD.

• The index targets the root segment in the Master File.

In the Master File, prior to the secondary index definitions, you must describe the entire
root segment of the data source. Every field listed in the DBD is an IMS sequence field or
search field, and each secondary index is based on one or more of these fields. You must
assign each secondary index field its appropriate alias, as described in How to Specify IMS
Field Attributes on page 8-39.

Note: IMS allows for system-defined sub-sequence fields to make an index unique. The
Master File can completely ignore the presence and length of such fields.
8-46 iWay Software

Getting Started in IMS
Syntax How to Use an IMS Secondary Index

For each secondary index, in the Master File you must:

1. Describe the secondary index as a group field at the end of the root segment. In the
group definition, use the index name (provided by the XDFLD NAME parameter in the
DBD) as the alias name, and append the suffix SKY to it.

GROUP=anyname, ALIAS=XDFLDname.SKY

where:

anyname

Is the field name for the group, unique within the Master File.

XDFLDname

Is the name assigned to the index by the XDFLD record in the DBD.

For example, consider the following portion of the DBD for the PATDB01 data source:

 .
 .
 .
FIELD NAME=LNAME,BYTES=12,START=56,TYPE=C
FIELD NAME=FNAME,BYTES=12,START=68,TYPE=C
 .
 .
 .
LCHILD NAME=(SEGIX1,PATDBIX1),PTR=INDX
XDFLD NAME=IXNAME,SRCH=(LNAME,FNAME), X
 SUBSEQ=/SX1,NULLVAL=BLANK

In the example, the fields that comprise the secondary index are LNAME, FNAME, and
an additional sub-sequence system field that makes the index unique and that the
Master File can ignore. The GROUP definition for the index in the Master File follows:

GROUP=NAMEIX, ALIAS=IXNAME.SKY, USAGE=A24, ACTUAL=A24,$

The ALIAS is the index name from the DBD (XDFLD NAME=IXNAME) with the suffix SKY
appended. Note that the index definition completely ignores the sub-sequence field.
iWay Data Adapter Administration for MVS and VM 8-47

IMS Master Files
2. Describe the indexed fields as subordinate fields of the group. The XDFLD SRCH
parameter in the DBD lists the names of the fields that participate in the index. You
already described these fields once in the Master File as sequence or search fields.

Assign each subordinate field a new field name not previously used in the Master File.
Give each subordinate field an alias value identical to the field name you assigned it
when you previously described it as a sequence or search field.

FIELDNAME=fieldname, ALIAS=alias
 .
 .
 .
GROUP= ...
FIELD[NAME]=newname, ALIAS=fieldname

where:

fieldname

Is the field name previously assigned to this field.

alias

Is the IMS field name from the DBD if the group field is a sequence or search field.

newname

Is any name not previously used in the Master File.

The following portion of the PATINFO Master File illustrates the secondary index
definition for the example in Step 1.

 .
FIELD=LAST_NAME, ALIAS=LNAME.IMS ,USAGE=A12, ACTUAL=A12,$
FIELD=FIRST_NAME, ALIAS=FNAME.IMS ,USAGE=A12, ACTUAL=A12,$
 .
 .
 .
GROUP=NAMEIX, ALIAS=IXNAME.SKY ,USAGE=A24, ACTUAL=A24,$
 FIELD=NAMEL, ALIAS= ,USAGE=A12, ACTUAL=A12,$
 FIELD=NAMEF, ALIAS= ,USAGE=A12, ACTUAL=A12,$

The FOCPSB must also reflect the secondary indexes. The IMS PSB includes a PCB for
the normal entry point into the data source and an additional PCB for entry through
each secondary index. Each PCB for a secondary index includes the parameter

PROCSEQ=indexDBDname

where:

indexDBDname

Is the LCHILD NAME parameter in the data source DBD.

The FOCPSB must have a one-to-one correspondence with the PSB.
8-48 iWay Software

Getting Started in IMS
The FOCPSB entry that corresponds to the PCB for the normal entry point into the data
source must identify the name of the Master File. This example illustrates the PCB for the
normal entry point into the PATDB01 data source and its corresponding FOCPSB entry.

Any FOCPSB entry that corresponds to a secondary index PCB must identify the name of
the index. This index name is the ALIAS of the GROUP record for the index in the Master File.
It is also the value of the XDFLDNAME parameter in the DBD.

The next example illustrates a secondary index PCB and its corresponding FOCPSB entry for
the PATDB01 data source.

When the data adapter generates DL/I calls for retrieval, it examines the record selection
tests in the request to determine which PCB offers the most efficient access path to the
required data. See IMS Access Control on page 8-76.

Note: Since the PSB most likely includes only one PCB for each secondary index, each
Master File that accesses the same index PCB must contain the same GROUP ALIAS value for
the index.

PCB PCB
TYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=9
SENSEG NAME=PATINFO,PARENT=0

FOCPSB PCBNAME=PATINFO, PCBTYPE=DB,$

PCB PCBTYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=9,
PROCSEQ=PATDBIX1
SENSEG NAME=PATINFO,PARENT=0

FOCPSB PCBNAME=IXNAME,PCBTYPE=DB,$
iWay Data Adapter Administration for MVS and VM 8-49

IMS Master Files
Segment Redefinition in IMS: The RECTYPE Attribute
An IMS segment can have multiple definitions. For instance, a segment may contain either
shipment or order information, depending on the value of one of its fields. If the field that
identifies the type of segment is at the same position and has the same format and length
in each redefinition, you can use the RECTYPE attribute to define the different segment
types in the Master File.

The record type (RECTYPE) field can be part of the key or of the body of the segment. When
you issue a request, you do not have to know which segment definition is called for. The
server retrieves the appropriate fields and values based on the value in the RECTYPE field.

In the Master File, you describe the one IMS segment with multiple server segments: a base
segment describing the unchanging portion, and a child segment describing each
redefinition:

• First define the constant portion of the segment as the base segment; give it the same
name as the IMS segment. Include a filler field for the portion that will be redefined. The
field that identifies the different types must be in the redefined portion.

• Describe each redefined portion as a child of the base segment. You can give these
children any valid segment names, but do not assign them SEGTYPE values. Include a
filler field in each child to occupy the positions of fields actually defined in the base
segment.

In each child segment, describe the field that identifies the segment type with
FIELDNAME=RECTYPE. The value in the RECTYPE field is the value that identifies the
type of segment. For example, the RECTYPE field could contain the value S for a
shipment record, or O for an order record. The format of the RECTYPE field can be
alphanumeric, integer, or packed.

Assign the identifying value (for example, S or O) as the ALIAS for the RECTYPE field. If
more than one value can identify the same record type, use the ACCEPT attribute
instead.

Describe the remaining fields of each child segment based on its contents and
function.
8-50 iWay Software

Getting Started in IMS
Example Illustrating an IMS DBD With a Redefined Segment

The following example illustrates an IMS DBD with a redefined segment. The CLIENT
segment contains client ID, address, and other client information. The INFO segment
contains either shipment information or order information, depending on the value in the
INFOTYPE field. If INFOTYPE contains the value S, the segment is a shipment segment; if
INFOTYPE contains the value O, the segment is an order segment.

The relevant portions of the DBD are:

SEGM NAME=CLIENT,BYTES=(200),PTR=(TWIN),PARENT=0
 FIELD=(CLID,SEQ,U),BYTES=8,START=1,TYPE=C
 .
 .
 .
SEGM NAME=INFO,BYTES=(200),PTR=(TWIN),PARENT=CLIENT
 FIELD=(IKEY,SEQ,U),BYTES=8,START=1,TYPE=C
 FIELD=(INFOTYPE),BYTES=1,START=09,TYPE=C
 .
 .
 .

The corresponding Master File represents the IMS INFO segment with three segments:

 FILE=IMS1,SUFFIX=IMS
 SEGNAME=CLIENT,SEGTYPE=S2
 FIELD=F1,CLID.KEY,A8,A8,$
1. SEGNAME=INFO ,SEGTYPE=S2,PARENT=CLIENT,$
 FIELD=F3,IKEY.KEY,A8,A8,$
 FIELD=,, A20,A20,$
2. SEGNAME=SHIP ,SEGTYPE=, PARENT=INFO,$
 FIELD=,, A8,A8,$
 FIELD=RECTYPE,S, A1,A1,$
 FIELD=SHIPDATE,, A6,A6,$
 .
 .
 .
 other shipment info
3. SEGNAME=ORDER,SEGTYPE=,PARENT=INFO,$
 FIELD=,, A8,A8,$
 FIELD=RECTYPE,O, A1,A1,$
 FIELD=ORDERDATE,,A6,A6,$
 .
 .
 .
 other order info.
iWay Data Adapter Administration for MVS and VM 8-51

IMS Master Files
Note:

1. The base segment is named INFO, like the IMS segment. It contains the key field; the
redefined portion is described as a filler field.

2. The SHIP segment describes the shipment record type; the field that corresponds to
the IMS INFOTYPE field has FIELDNAME=RECTYPE and ALIAS=S.

3. The ORDER segment describes the order record type; the field that corresponds to the
IMS INFOTYPE field has FIELDNAME=RECTYPE and ALIAS=O.

Notice that each child segment has a filler for the key field defined in the base segment.

Syntax How to Establish Multiple RECTYPE Values in IMS

If multiple values identify the same record type (for example, S or T for a shipment record),
use the ACCEPT attribute to enumerate the list or range of acceptable values. In this case,
define the ALIAS value as blank.

FIELDNAME=RECTYPE, ALIAS=, USAGE=usage, ACTUAL=actual,
 ACCEPT=val1 [OR] val2 [[OR] ...valn],$

or

FIELDNAME=RECTYPE, ALIAS=, USAGE=usage, ACTUAL=actual,
 ACCEPT=val1 to val2

where:

val1,val2,valn

Defines a list or range of values that identifies the record type. A list can be continued
on more than one line. Enclose values that contain embedded blanks or special
characters within single quotation marks.

The following examples illustrate the ACCEPT attribute:

ACCEPT=AAA TO RRR
ACCEPT=136 TO 1029
ACCEPT=RED OR WHITE OR BLUE
ACCEPT=RED WHITE BLUE
ACCEPT=6 OR 11 OR 922 OR 1000
ACCEPT=RED WHITE 'GREEN GREY'
8-52 iWay Software

Getting Started in IMS
Variable Length IMS Segments: The OCCURS Segment
In an IMS data source, segments can have repeating fields or repeating groups of fields. The
number of repetitions:

• Can be a fixed number.

• Can depend on the value of a field from the parent segment or from the non-repeating
portion of the variable segment.

• May have to be calculated from the segment length.

In the Master File, you define multiple segments to describe one IMS variable length
segment:

• Define the fixed (single-occurrence) portion of the IMS segment as the base segment;
give it the same name as the IMS segment.

• Define each repeating field or group of fields from the IMS segment as a child segment
whose parent is the base segment. The child segment definition has no SEGTYPE, but it
includes the OCCURS attribute to specify how many times the field repeats.

• Define the ORDER field in the OCCURS segment if you need to associate a sequence
number with each occurrence.

The OCCURS segment is a virtual segment (it does not physically exist) that describes the
repetitions to the server. Permissible values for the OCCURS attribute are as follows:

With a fixed number of occurrences, it is possible for the repeating field to be located
between other fields in the segment rather than at the end of the segment. In this case, you
must define a place-holder field at its position in the base segment. Then, in the OCCURS
segment, identify the location of the repeating field by specifying the name of the place-
holder field as the POSITION attribute.

OCCURS= Description

n The number of times the field repeats in the segment.

fieldname The name of a field that contains a value indicating the number of
times the field repeats in the segment. The repeating field must be at
the end of the segment.

VARIABLE Indicates that the number of repetitions must be computed from the
length of the segment. In this case, the segment must contain a
counter field as its first field; the counter field alias in the Master File
must be IMSname.CNT. The repeating field must be at the end of the
segment.
iWay Data Adapter Administration for MVS and VM 8-53

IMS Master Files
Syntax How to Describe Repetitions to the Server with an OCCURS Segment

SEGNAME=occseg, PARENT=imsseg, OCCURS=nfield ,$
SEGNAME=occseg, PARENT=imsseg, OCCURS=n [,POSITION=posfield] ,$
SEGNAME=occseg, PARENT=imsseg, OCCURS=VARIABLE ,$

where:

occseg

Is the name of the OCCURS segment. It can be any valid segment name.

imsseg

Is the name of the base segment. It must be the IMS segment name.

nfield

Is the name of a field in the parent or non-repeating portion of the segment whose
value is the number of times that the group repeats. You must define this field in the
Master File whether or not it is a search field defined in the DBD.

n

Is the fixed number of times that the group repeats in the segment. It is an integer
value from 1 to 4095.

posfield

Signals that the repeating field is embedded within the base segment rather than
occurring at the end, and names a field in the base segment that marks the starting
position of the repeating field.

VARIABLE

Indicates that the length of the repeating segment varies and that the number of
occurrences can be computed from each segment. In this case, the (base) segment
must contain a counter field as its first field; the counter field’s alias value must be
IMSname.CNT

where:

IMSname

Is the name of the field in the IMS DBD.

In the IMS DBD, a variable length segment differs from a fixed length segment only in the
BYTES parameter. For variable length segments, the BYTES parameter consists of two
values: the maximum and minimum number of bytes. IMS cannot search for values among
the repetitions within a segment. Therefore, in any request that references a field in a
repeating group, the server searches and screens the OCCURS segments, not IMS.
8-54 iWay Software

Getting Started in IMS
Syntax How to Describe the ORDER Field in IMS

Sometimes the sequence of fields within an OCCURS segment is significant. For example,
each instance of the repeating field may represent one quarter of the year, but the segment
may not have a field that specifies which quarter it applies to.

ORDER is an optional counter used to identify the sequence number within a group of
repeating fields. Specify it when the order of data is important. The ORDER field does not
represent an existing field in the data source; it is used only for internal processing.

The ORDER field must be the last field described in the OCCURS segment.

FIELDNAME=name, ALIAS=ORDER, USAGE=In, ACTUAL=I4 ,$

where:

name

Is any valid field name.

In

Is an integer format.

Note:

• The ALIAS value must be ORDER.

• The ACTUAL format must be I4.

The ORDER field must be the last field defined in the OCCURS segment.

In requests, you can use the value of the ORDER field. You can also specify a DEFINE
statement in the Master File to translate it to more meaningful values. For example:

DEFINE QTR/A3 = DECODE ORDER(1 '1ST' 2 '2ND' 3 '3RD' 4 '4TH');

A subsequent request could include

SELECT TOT.TAXES WHERE QTR=1

or:

SELECT QTR,BALANCE,INTEREST
iWay Data Adapter Administration for MVS and VM 8-55

IMS Master Files
Example Issuing OCCURS=n

In the following example, the IMS segment, IMS1, includes a group (consisting of the two
fields MONTH and AMOUNT) that repeats 12 times. The COBOL FD for the segment is:

01 IMS1
 05 ACCOUNT PIC X(9)
 05 TYPE PIC XXX
 05 PAYMENT OCCURS 12 TIMES
 10 MONTH PIC 99
 10 AMT PIC S9(3)V(99)COMP-3

The Master File uses two segments to describe this IMS variable length segment:

1.SEGNAME=IMS1,PARENT=,SEGTYPE=S2
 FIELD=ACT_NUM,ALIAS=ACCOUNT.KEY,A9,A9,$
 FIELD=TYPE,ALIAS=,A3,A3,$
2.SEGNAME=OCC1,PARENT=IMS1,OCCURS=12
 FIELD=MM, ALIAS=,A2,A2,$
 FIELD=AMT,ALIAS=,P6.3,P3,$

1. Segment IMS1 is the base segment. It has the same name as the IMS segment and
describes the two non-repeating fields: ACT_NUM and TYPE.

2. The OCCURS segment, OCC1, identifies IMS1 as its parent. It has no SEGTYPE, and it
includes the OCCURS attribute. The two repeating fields are described in this segment.

In the following example, the repeating group is not at the end of the segment; it is
embedded in the segment before the LNAME field. The COBOL FD for this situation is:

01 IMS1
 05 ACCOUNT PIC X(9)
 05 TYPE PIC XXX
 05 PAYMENT OCCURS 12 TIMES
 10 MONTH PIC 99
 10 AMT PIC S9(3)V(99)COMP-3
 05 LNAME PIC X(20)
8-56 iWay Software

Getting Started in IMS
The Master File must include LNAME in the base segment. It must also describe where the
repeating fields fit into the base segment by defining a place-holder field before LNAME,
equal to the length of the 12 occurrences, and by pointing to the place-holder field with the
POSITION attribute:

 SEGNAME=IMS1,PARENT=,SEGTYPE=S2
 FIELD=ACT_NUM,ALIAS=ACCOUNT.KEY,A9,A9,$
 FIELD=TYPE,ALIAS=,A3,A3,$
1. FIELD=HOLDIT,ALIAS=,A60,A60,$
 FIELD=LNAME,ALIAS=,A20,A20,$
2. SEGNAME=OCC1,PARENT=IMS1,OCCURS=12,POSITION=HOLDIT
 FIELD=MM,ALIAS=,A2,A2,$
 FIELD=AMT,ALIAS=,P6.3,P3,$

1. The HOLDIT field is the place holder for the repeating group in the base segment
(IMS1). Since the repeating group consists of 12 occurrences, each of which is 5 bytes
long (A2 and P3, described in segment OCC1), the HOLDIT field is defined as A60.

2. The attribute POSITION=HOLDIT in the OCCURS segment declaration describes where
the repeating group is located in the actual (base) segment.

Example Issuing OCCURS=fieldname

In the next example, the number of occurrences is specified by the value in the TIMES field.
The following COBOL FD describes this situation:

01 IMS1
 05 ACCOUNT PIC X(9)
 05 TYPE PIC XXX
 05 TIMES PIC S999 COMP-3
 05 PAYMENT OCCURS DEPENDING ON TIMES
 10 MONTH PIC 99
 10 AMT PIC S9(3)V(99)COMP-3

The Master File attribute, OCCURS=TIMES, identifies the TIMES field as containing the
number of repetitions. The Master File also defines the optional ORDER field as the last field
in the OCCURS segment:

 SEGNAME=IMS1,SEGTYPE=S2
 FIELD=ACT_NUM,ALIAS=ACCOUNT.KEY,A9,A9,$
 FIELD=TYPE,ALIAS=,A3,A3,$
 FIELD=TIMES,ALIAS=,P4,P2,$
1. SEGNAME=OCC1,PARENT=IMS1, OCCURS=TIMES
 FIELD=MM,ALIAS=,A2,A2,$
 FIELD=AMT,ALIAS=,P6.3,P3,$
2. FIELD=WHICH,ALIAS=ORDER,I4,I4,$
iWay Data Adapter Administration for MVS and VM 8-57

IMS Master Files
1. The attribute OCCURS=TIMES identifies the value in the TIMES field as the number of
instances of the repeating group.

2. The field named WHICH is the optional ORDER field (ALIAS=ORDER). It is an internal
counter defined as the last field in the OCCURS segment. It associates a sequence
number with each occurrence of the repeating group. With the ORDER field defined, a
request can include a test that selects a specific occurrence. For example:

WHERE WHICH = 3

Example Issuing OCCURS=VARIABLE

This example describes a segment in which the number of occurrences must be calculated
from the length of the segment. The first field in the segment must be a 2-byte counter field
that contains the true length of the segment and is defined to IMS in the DBD. The COBOL
FD for this variable length segment is:

01 IMS1
 05 COUNTER PIC 99 COMP
 05 ACCOUNT PIC X(9)
 05 TYPE PIC XXX
 05 PAYMSCHED OCCURS 1 TO 12 TIMES
 10 MONTH PIC 99
 10 AMT PIC 59(3)V(99)COMP-3

The Master File must specify OCCURS=VARIABLE and must describe the counter field with
the attribute

ALIAS=IMSname.CNT

 SEGNAME=IMS1,SEGTYPE=S2
1. FIELD=COUNTFLD,ALIAS=COUNTER.CNT,I2,I2,$
 FIELD=ACT_NUM,ALIAS=ACCOUNT.KEY,A9,A9,$
 FIELD=TYPE,ALIAS=,A3,A3,$
2. SEGNAME=OCC1,PARENT=IMS1,OCCURS=VARIABLE
 FIELD=MM,ALIAS=,A2,A2,$
 FIELD=AMT,ALIAS=,P6.3,P3,$

1. The 2-byte counter field must be the first field in the base segment. Its alias is formed
by appending the suffix CNT to the field name defined in the IMS DBD:

ALIAS=COUNTER.CNT

2. In the OCCURS segment definition, the attribute OCCURS=VARIABLE indicates that the
first field defined in the Master File contains the segment length and that the number
of repetitions must be calculated from this length.
8-58 iWay Software

Getting Started in IMS
Syntax How to Redefine Fields in IMS Databases

Support is provided for redefining record fields in IMS databases. This allows a field to be
described with an alternate layout.

Within the Master File, the redefined field(s) must be described in a separate unique
segment (SEGTYPE=U) using the POSITION=fieldname and OCCURS=1 attributes.

SEGNAME=segname,SEGTYPE=U,PARENT=parent,
OCCURS=1,POSITION=position ,$

where:

segname

Is the segment name.

parent

Is the name of the parent segment.

position

Is the field name of the field being redefined.

A one-to-one relationship is established between the parent record and the redefined
segment. The following example illustrates redefinition of the IMS structure described in
the COBOL file description:

01 ALLFIELDS.
 02 FLD1 PIC X(4).
 02 FLD2 PIC X(4).
 02 RFLD2 PIC 9(5)V99 COMP-3 REDEFINES FLD2.
 02 FLD3 PIC X(8).

FILENAME=REDEF, SUFFIX=IMS,$
 SEGNAME=ONE, SEGTYPE=S0,$
 GROUP=RKEY, ALIAS=KEY ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=FLD1, ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=FLD2, ,USAGE=A4 ,ACTUAL=A4.... ,$
 FIELDNAME=FLD3, ,USAGE=A8 ,ACTUAL=A8.... ,$
 SEGNAME=TWO, SEGTYPE=U, POSITION=FLD2, OCCURS=1, PARENT=ONE ,$
 FIELDNAME=RFLD2, ,USAGE=P8.2 ,ACTUAL=Z4 ,$
iWay Data Adapter Administration for MVS and VM 8-59

IMS Master Files
The redefined fields may have any user defined name. ALIAS names for redefined fields are
not required.

Use of the unique segment with redefined fields helps avoid problems with multipath
reporting.

Note:

• Redefinition is a read-only feature and is used only for presenting an alternate view of
the data. It is not used for changing the format of the data.

• A field that is being redefined must be equal in length to the field that it is redefining
(same actual length).

• For integer and packed fields, you must know your data. Attempts to print numeric
fields that contain alpha data will produce data exceptions or errors converting values.

More than one field can be redefined in a segment.

Syntax How to Select a PSB

You have two options for selecting a PSB within the session:

• You can issue the IMS SET PSB command in your server profile, or in a stored procedure.

• You can use an Access File to identify the PSB. Each Access File corresponds to one
Master File; it identifies the PSB associated with its corresponding Master File.

If you use an Access File, the data adapter identifies the appropriate PSB when you
reference a Master File in a request. The selection is automatic and transparent to you. Each
Access File can contain two attributes.

PSB=psbname, WRITE={YES|NO} ,$

where:

psbname

Is the name of the FOCPSB library member to use. This name must be identical to the
name of the actual PSB that IMS will access. If the member does not exist, the following
message is generated:

(EDA4261) FOCPSB MEMBER NOT FOUND: psbname

YES

Allows SQL update for this database.

NO

Does not allow SQL update for this database. This value is the default.
8-60 iWay Software

Getting Started in IMS
Access Files are members of a partitioned data set. The member name of an Access File
within its partitioned data set must be the same as the member name of the corresponding
Master File within its partitioned data set. At run time, the Access File data set is allocated to
ddname ACCESS. (This allocation is optional if all PSB selection is dynamic.)
Note:

• All participating files in a join must use the same PSB. Any attempt to join files that
require different PSBs generates the following message:

(EDA4295) ACCESS POINTS TO DIFFERENT PSBS IN JOIN

• The IMS SET PSB command supersedes the PSB attribute in the Access File.

The following is a sample Access File corresponding to the DI21PART Master File.

PSB=FOCSD, WRITE=NO ,$

IMS Sample File Descriptions
The following topics contain Master Files, FOCPSBs, PSBs, and DBDs for sample IMS data
sources. The data sources documented in these topics are:

Note: FOCPSBs created in prior releases may consist of fixed format records with no
attribute keywords. While this earlier format is supported, the recommended format is the
comma-delimited format used in the samples in these topics.

Database Description

DI21PART Sample HISAM data source included by IBM with IMS.

PATDB01 Sample HIDAM data source (not shipped to user sites);
demonstrates secondary indexes.

EMPDB Sample HIDAM data source (not shipped to user sites);
demonstrates partitioning/concatenation of PSBs.
iWay Data Adapter Administration for MVS and VM 8-61

IMS Sample File Descriptions
IMS DI21PART
IBM ships the DI21PART data source with IMS. It is an HDAM data source.

DI21PART DBD

PRINT NOGEN
DBD NAME=DI21PART,ACCESS=(HISAM,VSAM)
DATASET DD1=DI21PART,DEVICE=3380
SEGM NAME=PARTROOT,PARENT=0,BYTES=50,FREQ=250
FIELD NAME=(PARTKEY,SEQ),TYPE=C,BYTES=17,START=1
SEGM NAME=STANINFO,PARENT=PARTROOT,BYTES=85,FREQ=1
FIELD NAME=(STANKEY,SEQ),TYPE=C,BYTES=2,START=1
SEGM NAME=STOKSTAT,PARENT=PARTROOT,BYTES=160,FREQ=2
FIELD NAME=(STOCKEY,SEQ),TYPE=C,BYTES=16,START=1
SEGM NAME=CYCCOUNT,PARENT=STOKSTAT,BYTES=25,FREQ=1
FIELD NAME=(CYCLKEY,SEQ),TYPE=C,BYTES=2,START=1
SEGM NAME=BACKORDR,PARENT=STOKSTAT,BYTES=75,FREQ=0
FIELD NAME=(BACKKEY,SEQ),TYPE=C,BYTES=10,START=1
DBDGEN
FINISH
END

PSB to Access DI21PART

PCB TYPE=TP,MODIFY=YES,EXPRESS=YES
PCB TYPE=TP,EXPRESS=NO,MODIFY=YES,SAMETRM=YES
PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=GO,KEYLEN=43
SENSEG NAME=PARTROOT,PARENT=0
SENSEG NAME=STANINFO,PARENT=PARTROOT
SENSEG NAME=STOKSTAT,PARENT=PARTROOT
SENSEG NAME=CYCCOUNT,PARENT=STOKSTAT
SENSEG NAME=BACKORDR,PARENT=STOKSTAT
PSBGEN LANG=COBOL,PSBNAME=FOCSD,CMPAT=YES
END

FOCPSB to Access DI21PART

FOCPSB=EXTENDED,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME=DI21PART, PCBTYPE=DB,$
8-62 iWay Software

Getting Started in IMS
DI21PART Master File

 FILE=DI21PART,SUFFIX=IMS,$
SEGNAME=PARTROOT,PARENT=,SEGTYPE=S2,$
 FIELD=PARTKEY ,ALIAS=PARTKEY.HKY ,USAGE=A17 ,ACTUAL=A17 ,$
 FIELD=SKIP1 ,ALIAS= ,USAGE=A33 ,ACTUAL=A33 ,$
SEGNAME=STANINFO,PARENT=PARTROOT,SEGTYPE=S2,$
 FIELD=STANKEY ,ALIAS=STANKEY.KEY ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=SKIP2 ,ALIAS= ,USAGE=A83 ,ACTUAL=A83 ,$
SEGNAME=STOKSTAT,PARENT=PARTROOT,SEGTYPE=S2,$
 FIELD=STOCKEY ,ALIAS=STOCKEY.KEY ,USAGE=A16 ,ACTUAL=A16 ,$
 FIELD=SKIP3 ,ALIAS= ,USAGE=A124 ,ACTUAL=A124 ,$
SEGNAME=CYCCOUNT,PARENT=STOKSTAT,SEGTYPE=S2,$
 FIELD=CYCCKEY ,ALIAS=CYCCKEY.KEY ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELD=SKIP4 ,ALIAS= ,USAGE=A23 ,ACTUAL=A23 ,$
SEGNAME=BACKORDR,PARENT=STOKSTAT,SEGTYPE=S2,$
 FIELD=BACKEY ,ALIAS=BACKEY.KEY ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=SKIP5 ,ALIAS= ,USAGE=A65 ,ACTUAL=A65 ,$

DI21PART Access File

PSB=FOCSD,$

IMS PATDB01
The PATDB01 data source has a primary index because it is a HIDAM data source. It is also
defined with three secondary indexes.

The following topics illustrate:

• DBDs for the data source and the indexes.

• A PSB with two PCBs: one that uses the Primary Index and another that uses a
Secondary Index as the main entry point to the data source.

• The PSB to access PATDB01.

• The FOCPSB to access PATDB01.

• A Master File, PATINFO that corresponds to the FOCPSB.
iWay Data Adapter Administration for MVS and VM 8-63

IMS Sample File Descriptions
Data Source DBD for PATDB01

PRINT NOGEN
DBD NAME=PATDB01,ACCESS=(HIDAM,VSAM)
DATASET DD1=PATDB01,DEVICE=3380,BLOCK=4096,SCAN=5
 *
SEGM NAME=PATINFO,PTR=H,PARENT=0,BYTES=233
 FIELD NAME=(SSN,SEQ,U),BYTES=9,START=26,TYPE=C
 LCHILD NAME=(SEGIX,PATDBIX),PTR=INDX
 FIELD NAME=SEQFIELD,BYTES=6,START=1,TYPE=C
 FIELD NAME=REVSEQ,BYTES=6,START=7,TYPE=C
 FIELD NAME=SSNALPHA,BYTES=9,START=35,TYPE=C
 FIELD NAME=EMPID,BYTES=12,START=44,TYPE=C
 FIELD NAME=LNAME,BYTES=12,START=56,TYPE=C
 FIELD NAME=FNAME,BYTES=12,START=68,TYPE=C
 FIELD NAME=ADMDATE,BYTES=8,START=89,TYPE=C
 FIELD NAME=PATID,BYTES=10,START=176,TYPE=C
 FIELD NAME=/SX1
 *
 LCHILD NAME=(SEGIX1,PATDBIX1),PTR=INDX
 XDFLD NAME=IXNAME,SRCH=(LNAME,FNAME), X
 SUBSEQ=/SX1,NULLVAL=BLANK
 *
 LCHILD NAME=(SEGIX2,PATDBIX2),PTR=INDX
 XDFLD NAME=IXCOMP,SRCH=(SSNALPHA,EMPID,LNAME)
 *
 LCHILD NAME=(SEGIX3,PATDBIX3),PTR=INDX
 XDFLD NAME=IXADMD,SRCH=(ADMDATE), X
 SUBSEQ=/SX1,NULLVAL=BLANK
 *
DBDGEN
FINISH
END

Primary Index DBD for PATDB01

PRINT NOGEN
DBD NAME=PATDBIX,ACCESS=INDEX
DATASET DD1=PATDBIX,DEVICE=3380
 *
SEGM NAME=SEGIX,PARENT=0,BYTES=9
 FIELD NAME=(SSNIX,SEQ,U),BYTES=9,START=1,TYPE=C
 LCHILD NAME=(PATINFO,PATDB01),INDEX=SSN
DBDGEN
FINISH
END
8-64 iWay Software

Getting Started in IMS
Secondary Index DBDs for PATDB01

PATDBIX1 DBD:

PRINT NOGEN
DBD NAME=PATDBIX1,ACCESS=INDEX
DATASET DD1=PATDBIX1,DEVICE=3380
 *
SEGM NAME=SEGIX1,PARENT=0,BYTES=28
 FIELD NAME=(IXNAMEIX,SEQ,U),BYTES=28,START=1
 LCHILD NAME=(PATINFO,PATDB01),INDEX=IXNAME,PTR=SNGL
DBDGEN
FINISH
END

PATDBIX2 DBD:

PRINT NOGEN
DBD NAME=PATDBIX2,ACCESS=INDEX
DATASET DD1=PATDBIX2,DEVICE=3380
 *
SEGM NAME=SEGIX2,PARENT=0,BYTES=33
 FIELD NAME=(IXCOMPIX,SEQ,U),BYTES=33,START=1
 LCHILD NAME=(PATINFO,PATDB01),INDEX=IXCOMP,PTR=SNGL
DBDGEN
FINISH
END

PATDBIX3 DBD:

PRINT NOGEN
DBD NAME=PATDBIX3,ACCESS=INDEX
DATASET DD1=PATDBIX3,DEVICE=3380
 *
SEGM NAME=SEGIX3,PARENT=0,BYTES=12
 FIELD NAME=(IXADMDIX,SEQ,U),BYTES=12,START=1
 LCHILD NAME=(PATINFO,PATDB01),INDEX=IXADMD,PTR=SNGL
DBDGEN
FINISH
END
iWay Data Adapter Administration for MVS and VM 8-65

IMS Sample File Descriptions
PSB to Access PATDB01

PCB TYPE=TP,MODIFY=YES,EXPRESS=YES
PCB TYPE=TP,EXPRESS=NO,MODIFY=YES,SAMETRM=YES
*
PCB TYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=9
SENSEG NAME=PATINFO,PARENT=0
*
PCB TYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=28,PROCSEQ=PATDBIX1
SENSEG NAME=PATINFO,PARENT=0
*
PCB TYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=33,PROCSEQ=PATDBIX2
SENSEG NAME=PATINFO,PARENT=0
*
PCB TYPE=DB,DBDNAME=PATDB01,PROCOPT=GO,KEYLEN=12,PROCSEQ=PATDBIX3
SENSEG NAME=PATINFO,PARENT=0
*
PSBGEN LANG=COBOL,PSBNAME=TSTPSB01,CMPAT=YES
END

FOCPSB to Access PATDB01

FOCPSB=EXTENDED,$
PCBNAME= , PCBTYPE=TERM, $
PCBNAME= , PCBTYPE=TERM, $
PCBNAME= , PCBTYPE=TERM, $
PCBNAME=PATINFO, PCBTYPE=DB,$
PCBNAME=IXNAME , PCBTYPE=DB,$
PCBNAME=IXCOMP , PCBTYPE=DB,$
PCBNAME=IXADMD , PCBTYPE=DB,$
8-66 iWay Software

Getting Started in IMS
Master File to Access PATDB01

FILE=PATDB01,SUFFIX=IMS,$
SEGNAME=PATINFO,PARENT=,SEGTYPE=S1,$
FIELD=SEQFIELD ,ALIAS=SEQFIELD.IMS ,USAGE=A06 ,ACTUAL=A06,$
FIELD=REVSEQ ,ALIAS=REVSEQ.IMS ,USAGE=A06 ,ACTUAL=A06,$
FIELD=SALARY ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=OT_HR_PAY ,ALIAS= ,USAGE=A05 ,ACTUAL=A05,$
FIELD=SSN ,ALIAS=SSN.KEY ,USAGE=A09 ,ACTUAL=A09,$
FIELD=SSNALPHA ,ALIAS=SSNALPHA.IMS ,USAGE=A09 ,ACTUAL=A09,$
FIELD=EMPLOYEEID ,ALIAS=EMPID.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=LAST_NAME ,ALIAS=LNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=FIRST_NAME ,ALIAS=FNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DATE_OF_BIRTH ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=RACE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=ADMIT_DATE ,ALIAS=ADMDATE.IMS ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ADMIT_TYPE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DISPOSITION ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=TRANSFER_DATE ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ALLERGY1 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY2 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY3 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY4 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=HOUSING ,ALIAS= ,USAGE=A03 ,ACTUAL=A03,$
FIELD=RPR ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=URIN ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PRACTITIONAR ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=SHIFT ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PATINET_ID ,ALIAS=PATID.IMS ,USAGE=A10 ,ACTUAL=A10,$
FIELD=WHO_ADDED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_ADDED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=WHO_EDITED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_EDITED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=STATION_ID ,ALIAS= ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DIABETIC ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DIALYSIS ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$

GROUP=NAMEIX ,ALIAS=IXNAME.SKY ,USAGE=A24 ,ACTUAL=A24,$
 FIELD=NAMEL ,ALIAS=LAST_NAME ,USAGE=A12 ,ACTUAL=A12,$
 FIELD=NAMEF ,ALIAS=FIRST_NAME ,USAGE=A12 ,ACTUAL=A12,$

GROUP=COMPIX ,ALIAS=IXCOMP.SKY ,USAGE=A33 ,ACTUAL=A33,$
 FIELD=SSN_ALPHA ,ALIAS=SSNALPHA ,USAGE=A09 ,ACTUAL=A09,$
 FIELD=EMPLOYEE_ID ,ALIAS=EMPLOYEEID ,USAGE=A12 ,ACTUAL=A12,$
 FIELD=LASTNAME ,ALIAS=LAST_NAME ,USAGE=A12 ,ACTUAL=A12,$

GROUP=ADMDIX ,ALIAS=IXADMD.SKY ,USAGE=A08 ,ACTUAL=A08,$
FIELD=IX.ADMDATE ,ALIAS=ADMIT_DATE ,USAGE=A08 ,ACTUAL=A08,$
iWay Data Adapter Administration for MVS and VM 8-67

IMS Sample File Descriptions
IMS EMPDB
EMPDB01, EMPDB02, and EMPDB03 are HIDAM data sources that illustrate partitioning and
concatenation of PCBs in the FOCPSB. The following topics illustrate:

• The EMPDB01, EMPDB02, and EMPDB03 DBDs for the three partitions of the data
source, and, since these are HIDAM data sources, the EMPDBIX1, EMPDBIX2, and
EMPDBIX3 DBDs for the index data sources.

• A PSB with three PCBs, each corresponding to one partition of the data source.

• The FOCPSB corresponding to the PSB. It includes the LOWVALUE and HIGHVALUE
attributes for each PCB and the CONCATNAME record to define the concatenation.

The EMPDB01, EMPDB02, and EMPDB03 Master Files for the individual partitions, and the
EMPDBJ Master File for the concatenation.

EMPDB01 DBD

Data source DBD:

PRINT NOGEN
DBD NAME=EMPDB01,ACCESS=(HIDAM,VSAM)
DATASET DD1=EMPDB01,DEVICE=3380,BLOCK=4096,SCAN=5
 *
SEGM NAME=EMPINFO,PTR=H,PARENT=0,BYTES=212
 FIELD NAME=(SSNALPHA,SEQ,U),BYTES=9,START=18,TYPE=C
 LCHILD NAME=(SEGIX1,EMPDBIX1),PTR=INDX
 FIELD NAME=SEQFIELD,BYTES=2,START=1,TYPE=P
 FIELD NAME=REVSEQ,BYTES=6,START=3,TYPE=C
 FIELD NAME=SSN,BYTES=3,START=15,TYPE=P
 FIELD NAME=EMPID,BYTES=12,START=27,TYPE=C
 FIELD NAME=LNAME,BYTES=12,START=39,TYPE=C
 FIELD NAME=FNAME,BYTES=12,START=51,TYPE=C
 FIELD NAME=ADMDATE,BYTES=8,START=72,TYPE=C
 *
DBDGEN
FINISH
END
8-68 iWay Software

Getting Started in IMS
Index DBD:

PRINT NOGEN
DBD NAME=EMPDBIX1,ACCESS=INDEX
DATASET DD1=EMPDBIX1,DEVICE=3380
 *
SEGM NAME=SEGIX1,PARENT=0,BYTES=9
 FIELD NAME=(SSNIX,SEQ,U),BYTES=9,START=1
 LCHILD NAME=(EMPINFO,EMPDB01),INDEX=SSNALPHA
DBDGEN
FINISH
END

EMPDB02 DBD

Database DBD:

PRINT NOGEN
DBD NAME=EMPDB02,ACCESS=(HIDAM,VSAM)
DATASET DD1=EMPDB02,DEVICE=3380,BLOCK=4096,SCAN=5
 *
SEGM NAME=EMPINFO,PTR=H,PARENT=0,BYTES=212
 FIELD NAME=(SSNALPHA,SEQ,U),BYTES=9,START=18,TYPE=C
 LCHILD NAME=(SEGIX2,EMPDBIX2),PTR=INDX
 FIELD NAME=SEQFIELD,BYTES=2,START=1,TYPE=P
 FIELD NAME=REVSEQ,BYTES=6,START=3,TYPE=C
 FIELD NAME=SSN,BYTES=3,START=15,TYPE=P
 FIELD NAME=EMPID,BYTES=12,START=27,TYPE=C
 FIELD NAME=LNAME,BYTES=12,START=39,TYPE=C
 FIELD NAME=FNAME,BYTES=12,START=51,TYPE=C
 FIELD NAME=ADMDATE,BYTES=8,START=72,TYPE=C
 *
DBDGEN
FINISH
END

Index DBD:

PRINT NOGEN
DBD NAME=EMPDBIX2,ACCESS=INDEX
DATASET DD1=EMPDBIX2,DEVICE=3380
 *
SEGM NAME=SEGIX2,PARENT=0,BYTES=9
 FIELD NAME=(SSNIX,SEQ,U),BYTES=9,START=1
 LCHILD NAME=(EMPINFO,EMPDB02),INDEX=SSNALPHA
DBDGEN
FINISH
END
iWay Data Adapter Administration for MVS and VM 8-69

IMS Sample File Descriptions
EMPDB03 DBD

Database DBD:

PRINT NOGEN
DBD NAME=EMPDB03,ACCESS=(HIDAM,VSAM)
DATASET DD1=EMPDB03,DEVICE=3380,BLOCK=4096,SCAN=5
 *
SEGM NAME=EMPINFO,PTR=H,PARENT=0,BYTES=212
 FIELD NAME=(SSNALPHA,SEQ,U),BYTES=9,START=18,TYPE=C
 LCHILD NAME=(SEGIX3,EMPDBIX3),PTR=INDX
 FIELD NAME=SEQFIELD,BYTES=2,START=1,TYPE=P
 FIELD NAME=REVSEQ,BYTES=6,START=3,TYPE=C
 FIELD NAME=SSN,BYTES=3,START=15,TYPE=P
 FIELD NAME=EMPID,BYTES=12,START=27,TYPE=C
 FIELD NAME=LNAME,BYTES=12,START=39,TYPE=C
 FIELD NAME=FNAME,BYTES=12,START=51,TYPE=C
 FIELD NAME=ADMDATE,BYTES=8,START=72,TYPE=C
 *
DBDGEN
FINISH
END

Index DBD:

PRINT NOGEN
DBD NAME=EMPDBIX3,ACCESS=INDEX
DATASET DD1=EMPDBIX3,DEVICE=3380
 *
SEGM NAME=SEGIX3,PARENT=0,BYTES=9
 FIELD NAME=(SSNIX,SEQ,U),BYTES=9,START=1
 LCHILD NAME=(EMPINFO,EMPDB03),INDEX=SSNALPHA
DBDGEN
FINISH
END

PSB to Access the EMPDB Data Sources

PCB TYPE=TP,MODIFY=YES,EXPRESS=YES
PCB TYPE=TP,EXPRESS=NO,MODIFY=YES,SAMETRM=YES
PCB TYPE=DB,DBDNAME=EMPDB01,PROCOPT=GO,KEYLEN=9
SENSEG NAME=EMPINFO,PARENT=0
PCB TYPE=DB,DBDNAME=EMPDB02,PROCOPT=GO,KEYLEN=9
SENSEG NAME=EMPINFO,PARENT=0
PCB TYPE=DB,DBDNAME=EMPDB03,PROCOPT=GO,KEYLEN=9
SENSEG NAME=EMPINFO,PARENT=0
PSBGEN LANG=COBOL,PSBNAME=EMPPSBJ,CMPAT=YES
END
8-70 iWay Software

Getting Started in IMS
FOCPSB to Access the EMPDB Data Sources

FOCPSB=EXTENDED,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME= , PCBTYPE=TERM,$
PCBNAME=EMPDB01, PCBTYPE=DB, LOWVALUE=000000001, HIGHVALUE=000001667,$
PCBNAME=EMPDB02, PCBTYPE=DB, LOWVALUE=000001668, HIGHVALUE=000003334,$
PCBNAME=EMPDB03, PCBTYPE=DB, LOWVALUE=000003335, HIGHVALUE=000005000,$
CONCATNAME=EMPDBJ, USE=EMPDB01/EMPDB02/EMPDB03, $

Master Files to Access the EMPDB Data Sources

The EMPDB01, EMPDB02, and EMPDB03 Master Files each correspond to a PCB for one
individual partition of the data source; the EMPDBJ Master File corresponds to the
concatenation of the three partitions.
iWay Data Adapter Administration for MVS and VM 8-71

IMS Sample File Descriptions
EMPDB01 Master File

FILE=EMPDB01,SUFFIX=IMS,$
SEGNAME=EMPINFO,PARENT=,SEGTYPE=S1,$
FIELD=SEQFIELD ,ALIAS=SEQFIELD.IMS ,USAGE=P6 ,ACTUAL=P2 ,$
FIELD=REVSEQ ,ALIAS=REVSEQ.IMS ,USAGE=A6 ,ACTUAL=A6 ,$
FIELD=SALARY ,ALIAS= ,USAGE=P8 ,ACTUAL=P4 ,$
FIELD=OT_HR_PAY ,ALIAS= ,USAGE=P5 ,ACTUAL=P2 ,$
FIELD=SSN ,ALIAS=SSN.IMS ,USAGE=P9 ,ACTUAL=P3 ,$
FIELD=SSNALPHA ,ALIAS=SSNALPHA.KEY ,USAGE=A9 ,ACTUAL=A9 ,$
FIELD=EMPID ,ALIAS=EMPID.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=ELAST_NAME ,ALIAS=ELNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=EFIRST_NAME ,ALIAS=EFNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DATE_OF_BIRTH ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=RACE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=ADMIT_DATE ,ALIAS=ADMDATE.IMS ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ADMIT_TYPE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DISPOSITION ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=TRANSFER_DATE ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ALLERGY1 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY2 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY3 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY4 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=HOUSING ,ALIAS= ,USAGE=A03 ,ACTUAL=A03,$
FIELD=RPR ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=URIN ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PRACTITIONAR ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=SHIFT ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PATINET_ID ,ALIAS= ,USAGE=P12 ,ACTUAL=P4 ,$
FIELD=WHO_ADDED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_ADDED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=WHO_EDITED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_EDITED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=STATION_ID ,ALIAS= ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DIABETIC ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DIALYSIS ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
8-72 iWay Software

Getting Started in IMS
EMPDB02 Master File

FILE=EMPDB02,SUFFIX=IMS,$
SEGNAME=EMPINFO,PARENT=,SEGTYPE=S1,$
FIELD=SEQFIELD ,ALIAS=SEQFIELD.IMS ,USAGE=P6 ,ACTUAL=P2 ,$
FIELD=REVSEQ ,ALIAS=REVSEQ.IMS ,USAGE=A6 ,ACTUAL=A6 ,$
FIELD=SALARY ,ALIAS= ,USAGE=P8 ,ACTUAL=P4 ,$
FIELD=OT_HR_PAY ,ALIAS= ,USAGE=P5 ,ACTUAL=P2 ,$
FIELD=SSN ,ALIAS=SSN.IMS ,USAGE=P9 ,ACTUAL=P3 ,$
FIELD=SSNALPHA ,ALIAS=SSNALPHA.KEY ,USAGE=A9 ,ACTUAL=A9 ,$
FIELD=EMPID ,ALIAS=EMPID.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=ELAST_NAME ,ALIAS=ELNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=EFIRST_NAME ,ALIAS=EFNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DATE_OF_BIRTH ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=RACE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=ADMIT_DATE ,ALIAS=ADMDATE.IMS ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ADMIT_TYPE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DISPOSITION ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=TRANSFER_DATE ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ALLERGY1 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY2 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY3 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY4 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=HOUSING ,ALIAS= ,USAGE=A03 ,ACTUAL=A03,$
FIELD=RPR ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=URIN ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PRACTITIONAR ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=SHIFT ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PATINET_ID ,ALIAS= ,USAGE=P12 ,ACTUAL=P4 ,$
FIELD=WHO_ADDED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_ADDED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=WHO_EDITED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_EDITED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=STATION_ID ,ALIAS= ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DIABETIC ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DIALYSIS ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
iWay Data Adapter Administration for MVS and VM 8-73

IMS Sample File Descriptions
EMPDB03 Master File

FILE=EMPDB03,SUFFIX=IMS,$
SEGNAME=EMPINFO,PARENT=,SEGTYPE=S1,$
FIELD=SEQFIELD ,ALIAS=SEQFIELD.IMS ,USAGE=P6 ,ACTUAL=P2 ,$
FIELD=REVSEQ ,ALIAS=REVSEQ.IMS ,USAGE=A6 ,ACTUAL=A6 ,$
FIELD=SALARY ,ALIAS= ,USAGE=P8 ,ACTUAL=P4 ,$
FIELD=OT_HR_PAY ,ALIAS= ,USAGE=P5 ,ACTUAL=P2 ,$
FIELD=SSN ,ALIAS=SSN.IMS ,USAGE=P9 ,ACTUAL=P3 ,$
FIELD=SSNALPHA ,ALIAS=SSNALPHA.KEY ,USAGE=A9 ,ACTUAL=A9 ,$
FIELD=EMPID ,ALIAS=EMPID.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=ELAST_NAME ,ALIAS=ELNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=EFIRST_NAME ,ALIAS=EFNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DATE_OF_BIRTH ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=RACE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=ADMIT_DATE ,ALIAS=ADMDATE.IMS ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ADMIT_TYPE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DISPOSITION ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=TRANSFER_DATE ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ALLERGY1 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY2 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY3 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY4 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=HOUSING ,ALIAS= ,USAGE=A03 ,ACTUAL=A03,$
FIELD=RPR ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=URIN ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PRACTITIONAR ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=SHIFT ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PATINET_ID ,ALIAS= ,USAGE=P12 ,ACTUAL=P4 ,$
FIELD=WHO_ADDED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_ADDED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=WHO_EDITED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_EDITED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=STATION_ID ,ALIAS= ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DIABETIC ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DIALYSIS ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
8-74 iWay Software

Getting Started in IMS
EMPDBJ Master File

FILE=EMPDBJ,SUFFIX=IMS,$
SEGNAME=EMPINFO,PARENT=,SEGTYPE=S1,$
FIELD=SEQFIELD ,ALIAS=SEQFIELD.IMS ,USAGE=P6 ,ACTUAL=P2 ,$
FIELD=REVSEQ ,ALIAS=REVSEQ.IMS ,USAGE=A6 ,ACTUAL=A6 ,$
FIELD=SALARY ,ALIAS= ,USAGE=P8 ,ACTUAL=P4 ,$
FIELD=OT_HR_PAY ,ALIAS= ,USAGE=P5 ,ACTUAL=P2 ,$
FIELD=SSN ,ALIAS=SSN.IMS ,USAGE=P9 ,ACTUAL=P3 ,$
FIELD=SSNALPHA ,ALIAS=SSNALPHA.KEY ,USAGE=A9 ,ACTUAL=A9 ,$
FIELD=EMPID ,ALIAS=EMPID.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=ELAST_NAME ,ALIAS=ELNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=EFIRST_NAME ,ALIAS=EFNAME.IMS ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DATE_OF_BIRTH ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=RACE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=ADMIT_DATE ,ALIAS=ADMDATE.IMS ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ADMIT_TYPE ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DISPOSITION ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=TRANSFER_DATE ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=ALLERGY1 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY2 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY3 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=ALLERGY4 ,ALIAS= ,USAGE=A15 ,ACTUAL=A15,$
FIELD=HOUSING ,ALIAS= ,USAGE=A03 ,ACTUAL=A03,$
FIELD=RPR ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=URIN ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PRACTITIONAR ,ALIAS= ,USAGE=A02 ,ACTUAL=A02,$
FIELD=SHIFT ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=PATINET_ID ,ALIAS= ,USAGE=P12 ,ACTUAL=P4 ,$
FIELD=WHO_ADDED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_ADDED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=WHO_EDITED ,ALIAS= ,USAGE=A10 ,ACTUAL=A10,$
FIELD=DATE_EDITED ,ALIAS= ,USAGE=A08 ,ACTUAL=A08,$
FIELD=STATION_ID ,ALIAS= ,USAGE=A12 ,ACTUAL=A12,$
FIELD=DIABETIC ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
FIELD=DIALYSIS ,ALIAS= ,USAGE=A01 ,ACTUAL=A01,$
iWay Data Adapter Administration for MVS and VM 8-75

IMS Access Control
IMS Access Control
The following topics pertain to IMS Access Control:

• IMS SET commands.

• Data adapter optimization.

• DL/I calls.

• Record selection tests.

• IMS update.

These topics explain access control, retrieval efficiencies, and how the data adapter
optimizes a request.

Note: When you issue a request in a shared database environment, if an IMS call returns a
GG status code (indicating an enqueue), the data adapter attempts to retrieve the segment
again. The request does not fail unless the data adapter detects the GG status code ten
times in succession.

If the call still fails after 10 attempts, the user receives a message indicating that the report
is incomplete. The report displays all records retrieved up until that time.
8-76 iWay Software

Getting Started in IMS
IMS SET Command
The following topics discuss the IMS SET command. You can set this command in a stored
procedure or a server profile.

IMS PSB
If you did not create an Access File to automatically select the PSB for your request, or if you
want to select a different PSB, issue the following command

{TSO|MVS} IMS SET PSB psbname

where:

psbname

Is the name of the FOCPSB library member to use. This name must be identical to the
name of the actual PSB that IMS will access. For more information on Access Files, see
Describing IMS Data Sources on page 8-28. If the member does not exist, the following
message is generated:

(EDA4261) FOCPSB MEMBER NOT FOUND: psbname

Note:

• All participating IMS files in a SELECT statement must use the same PSB. Any attempt to
SELECT from files that require different PSBs will generate the following message:

(EDA4295) ACCESS POINTS TO DIFFERENT PSBS IN JOIN

The IMS SET PSB command supersedes the PSB attribute in the Access File.
iWay Data Adapter Administration for MVS and VM 8-77

IMS Data Adapter Optimization
IMS Data Adapter Optimization
When you issue an SQL SELECT statement, the data adapter must determine how much of
the request it can pass off to IMS (that is, translate into an IMS SSA). If IMS can apply the
screening conditions and select the proper records from the data source, the server need
only format the results. However, if the data adapter cannot translate parts of the request
into an SSA, it must retrieve the segments sequentially from IMS and let the server apply
the screening criteria.

Optimization is the process by which the data adapter passes the selection operations of a
request to IMS for processing. Data adapter optimization reduces the volume of IMS-to-
server communication; it improves response time by exploiting IMS internal optimization
techniques.

A qualified Segment Search Argument (SSA) for a segment is a logical condition on one or
more sequence or search fields from the segment. IMS retrieves only the segment instances
that make the condition true. For example, a qualified SSA on the STANINFO segment of the
DI21PART data source could be:

STANINFO(STANKEY EQ AA)

The data adapter communicates with IMS by issuing GU (Get Unique) and GN (Get Next)
DL/I calls. The most efficient DL/I calls incorporate qualified SSAs and thus enable IMS to
find the required segment instances. Therefore, when the data adapter intercepts a request,
its goal is to construct a set of qualified SSAs that completely describes the screening
criteria, and to pass these SSAs to IMS.

Although you can issue any SQL SELECT statement through the data adapter, keep in mind
that:

• Only fields that are IMS sequence fields, search fields, or secondary indexes (in the
Master File, ALIAS=IMSname.KEY, .IMS, or .HKY) can be referenced in qualified SSAs. If
the request includes selection criteria on fields that are not sequence or search fields,
the data adapter retrieves the necessary segments sequentially, and the server screens
them.

• Screening conditions on fields in OCCURS segments cannot be optimized.

• Screening conditions on group fields can be optimized only if your request references
either the group name or the left-most component fields from the group.

For a detailed discussion of screening conditions and optimization, see IMS Record Selection
Tests on page 8-79.
8-78 iWay Software

Getting Started in IMS
IMS Record Selection Tests
You can issue any SQL request through the IMS Data Adapter. However, those requests
whose record selection criteria can be applied at the IMS level (with qualified SSAs on .KEY,
.IMS, or .HKY fields) result in many fewer DL/I calls and I/O operations than unoptimized
requests. They can achieve performance improvements measured in order of magnitude.

Note: Since IMS does not support the concept of missing data, all fields are considered not
missing.

These topics include sample requests with their corresponding FSTRACE4 results. You
allocate FSTRACE4 with the following syntax:

DYNAM ALLOC FILE FSTRACE4 DATASET userid.fstrace4 -
 SHR REUSE LRECL 80 RECFM F

Once you allocate the trace, you get a dump of the SSA buffer setup for each request. For
example, the following is a selection test on the SEQFIELD search field in the PATINFO
segment of the PATDB01 data source:

WHERE seqfield = '100000' or '100001'

It produces the following FSTRACE4 results:

 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 C5D8C6C9 *PATINFO *-(SEQFI*
 C5D3C47E 40F1F0F0 F0F0F04E E2C5D8C6 *ELD= 100000+SEQF*
 C9C5D3C4 7E40F1F0 F0F0F0F1 5D40 *IELD= 100001) *

Note:

• The dump has a left side and a right side. The left side shows the hexadecimal values in
the memory locations. The right side, delimited by *’s, contains the corresponding
alphanumeric characters.

Since not all hexadecimal values represent printable alphanumeric characters, those
parts of the dump that correspond to non-printable characters appear as blanks on the
right side. In particular, if a comparison value in an SSA is a packed number, it appears
as blank on the right-hand side of the dump. In this example, the comparison values are
alphanumeric, and therefore they appear.

• The logical operator AND is represented by an asterisk (*) in the SSA, and the logical
operator OR is represented by a plus sign (+).

• The field names in the SSA are the alias names from the Master File, since these are the
IMS names for the fields.
iWay Data Adapter Administration for MVS and VM 8-79

IMS Record Selection Tests
The SSA always includes the segment name. What distinguishes an optimized request from
an unoptimized request is whether the SSA is qualified; a qualified SSA includes the
selection test from the request, as in the previous example. An unqualified SSA contains the
segment name with no selection criteria.

Whenever possible, the data adapter translates screening conditions from the SQL request
into qualified SSAs. However, not all server screening conditions can be translated into
SSAs. Such conditions are still applied, but by the server, rather than by IMS. In those cases,
the data adapter retrieves the data sequentially and passes it to the server for screening.

IMS Access Method Restrictions
Some IMS access methods are limited in their ability to apply certain screening conditions.
These restrictions can affect request optimization. The following considerations apply to
specific access methods:

• Since HDAM data sources are stored randomly and accessed directly, IMS cannot
retrieve their records in root key sequence. Therefore, with an HDAM data source, the
data adapter can only optimize equality conditions on the root key:

KEY=value

You can build a secondary index on the root key and use it to optimize sequential
processing.

Note: The NE condition is not optimized.

• With HIDAM data sources, the data adapter optimizes LIKE tests with a mask by
translating the LIKE into a range condition. For an example, see Partial Key and Multi-
Segment Requests in IMS on page 8-86.

• To take advantage of efficiencies available by limiting processing to one area of a Fast
Path DEDB data source, the PSB must limit access to that area.
8-80 iWay Software

Getting Started in IMS
IMS Rules for Constructing SSAs From WHERE Tests
In order for the data adapter to translate an SQL WHERE test into a qualified SSA:

• The field tested must be an IMS key field, search field, or a secondary index.

• The test relation must be one of the relations described in these topics.

• The tested field cannot be a floating point numeric or zoned field.

Note: In order for the data adapter to optimize selection tests on zoned key fields, you
must describe the USAGE format of these fields as alphanumeric or packed in the
Master File.

• The ACTUAL and USAGE formats of the tested field must be basically the same, so no
format conversion is required. For example, extending with leading zeros or padding
with trailing blanks is not a format conversion, but shifting the implied decimal point in
a packed field is a format conversion.

• In an HDAM data source, the tests must use the equality (=) relation on the root key,
with no value masking.

The following test relations can be translated to qualified SSAs:

• A comparison of a field to a list of values:

field relation value1 OR value2 ... OR valuen

For a discussion of SSA generation when comparing a field to a list of values, see
Complex Screening Conditions in IMS on page 8-82.

• = <> < > <= >=

• IN

• NOT IN

• LIKE

• NOT LIKE

• BETWEEN

The BETWEEN relation is treated as a pair of relations. For example:

WHERE field GE . . . AND WHERE field LE . . .

A search on a partial key (the high-order portion of a key) is also translated to a range
condition and optimized.

• NOT BETWEEN
iWay Data Adapter Administration for MVS and VM 8-81

IMS Record Selection Tests
Complex Screening Conditions in IMS
The general form for a complex screening condition is:

field1 relation1 value1 OR field2 relation2 value2 OR ...

If the fields are search or sequence fields, the data adapter can optimize the screening test
subject to certain conditions. The data adapter either constructs a single SSA or multiple
SSAs, depending on the characteristics of the segment and the type of relation used.

Note: Specifying the AND operator between logical conditions in a selection test is
equivalent to using multiple WHERE statements without the AND. The data adapter
constructs a qualified SSA that incorporates the AND operation in either case.

The following topics describe:

• The SSA buffer, and how the data adapter processes SSAs that are too long to fit into
the buffer.

• Conditions under which the data adapter constructs a single SSA.

• Conditions under which the data adapter constructs multiple SSAs.

Reference The IMS SSA Buffer

Once the data adapter constructs an SSA, it must place the SSA in the SSA buffer in order to
submit it in a DL/I call. If the SSA is too long to fit into the buffer, the data adapter makes the
following choices between the individual screening conditions within the SSA:

• Tests on key fields have priority over all other tests.

• The remaining tests are given priority based on their order in the query statement.
Since earlier tests are retained and later tests are eliminated from the SSA, you can
control the SSA generation process by carefully constructing your screening
conditions.

When an SSA does not fit into the SSA buffer, no error is generated. The selection tests that
do not get passed to IMS in the SSA are still applied, but they are not optimized; that is, the
server applies them, not IMS.

Note: The number of conditions that fit into the SSA buffer is not fixed; it varies depending
on the lengths of the values in the comparisons.
8-82 iWay Software

Getting Started in IMS
Example Constructing a Single SSA in IMS

The data adapter constructs a single SSA that incorporates the entire complex logical
condition if either:

• The segment has no key.

• There is a key, but it is not qualified.

• There is a qualified key, and the relation in the test on the key is the equality (=) relation
or a single range.

If the entire SSA fits into the SSA buffer, it is submitted in the DL/I call. If the SSA is too long
to fit into the SSA buffer, the data adapter makes the choices described in The IMS SSA Buffer
on page 8-82.

The following example illustrates SSA generation when there is no equality test on the key
field, but there are tests on a search field:

SELECT SSN,SEQFIELD,LAST_NAME
FROM PATINFO
WHERE SEQFILED = '100000' OR '100005'
AND LAST_NAME = 'BORRERO' OR 'JONES';

The trace produced by these selection criteria is illustrated below:

 set up SSA-Q:

 D7C1E3C9 D5C6D640 5C604DE2 C5D8C6C9 *PATINFO *-(SEQFI*
 C5D3C47E 40F1F0F0 F0F0F05C D3D5C1D4 *ELD= 100000*LNAM*
 C5404040 7E40C2D6 D9D9C5D9 D6404040 *E = BORRERO *
 40404EE2 C5D8C6C9 C5D3C47E 40F1F0F0 * +SEQFIELD= 100*
 F0F0F05C D3D5C1D4 C5404040 7E40D1D6 *000*LNAME = JO*
 D5C5E240 40404040 40404EE2 C5D8C6C9 *NES +SEQFI*
 C5D3C47E 40F1F0F0 F0F0F55C D3D5C1D4 *ELD= 100005*LNAM*
 C5404040 7E40C2D6 D9D9C5D9 D6404040 *E = BORRERO *
 40404EE2 C5D8C6C9 C5D3C47E 40F1F0F0 * +SEQFIELD= 100*
 F0F0F55C D3D5C1D4 C5404040 7E40D1D6 *005*LNAME = JO*
 D5C5E240 40404040 40405D40 *NES) *

The trace shows that the data adapter generates one SSA, incorporating the following
selection criteria:

(SEQFIELD EQ 100000 AND LNAME EQ BORRERO
 OR SEQFIELD EQ 100000 AND LNAME EQ JONES
 OR SEQFIELD EQ 100005 AND LNAME EQ BORRERO
 OR SEQFIELD EQ 100005 AND LNAME EQ JONES)

If this SSA did not fit into the SSA buffer, the data adapter would retain as much of it as
possible in a qualified call, after which the server would apply the remaining tests to the
returned segments.
iWay Data Adapter Administration for MVS and VM 8-83

IMS Record Selection Tests
The following answer set is produced:

197548684 100005 JONES

Syntax How to Construct Multiple SSAs in IMS

This topic describes how the data adapter handles SSA generation when the condition in
the SQL request compares a key field to a list of values. The key can be unique or non-
unique. The form of such a condition is

WHERE key IN (value1, value2, ... ,valuen)

where:

key

Is a key field.

value1,...,valuen

Are the comparison values.

In this case, the data adapter constructs a separate SSA for each value in the list (in
ascending sort sequence) and transmits each one in turn to IMS:

(key EQ value1)
 .
 .
 .
(key EQ valuen)

The data adapter first issues a DL/I call containing only the first SSA. If IMS locates a
segment that satisfies the condition in the SSA, the data adapter returns the segment to the
server. Otherwise, the data adapter issues a DL/I call that incorporates only the second SSA.
It continues until IMS either locates a segment that satisfies one of the SSAs or exhausts the
list of values.

In the following example, the data adapter constructs three SSAs:

SELECT SSN,SEQFIELD,LAST_NAME
FROM PATINFO
WHERE SSN = '197548682' OR '197548685' OR '197548691';
8-84 iWay Software

Getting Started in IMS
The FSTRACE4 results show the three separate SSAs:

 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 E2D54040 *PATINFO *-(SSN *
 4040407E 40F1F9F7 F5F4F8F6 F8F25D40 * = 197548682) *
 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 E2D54040 *PATINFO *-(SSN *
 4040407E 40F1F9F7 F5F4F8F6 F8F55D40 * = 197548685) *
 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 E2D54040 *PATINFO *-(SSN *
 4040407E 40F1F9F7 F5F4F8F6 F9F15D40 * = 197548691) *

The following answer set is produced:

 197548682 100003 SALEH
 197548685 100006 JACA
 197548691 100012 BOYCE

The next request illustrates an equality test on the key field and an additional test on a
search field:

SELECT SSN,SEQFIELD,LAST_NAME
FROM PATINFO
WHERE SSN = '197548679' OR '197548682' OR '197548685'
AND SEQFIELD GT '100000';

The corresponding trace shows the multiple SSAs that are generated:

 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 E2D54040 *PATINFO *-(SSN *
 4040407E 40F1F9F7 F5F4F8F6 F7F95CE2 * = 197548679*S*
 C5D8C6C9 C5D3C46E 40F1F0F0 F0F0F05D *EQFIELD> 100000)*
 40 * *
 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 E2D54040 *PATINFO *-(SSN *
 4040407E 40F1F9F7 F5F4F8F6 F8F25CE2 * = 197548682*S*
 C5D8C6C9 C5D3C46E 40F1F0F0 F0F0F05D *EQFIELD> 100000)*
 40 * *
 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 E2D54040 *PATINFO *-(SSN *
 4040407E 40F1F9F7 F5F4F8F6 F8F55CE2 * = 197548685*S*
 C5D8C6C9 C5D3C46E 40F1F0F0 F0F0F05D *EQFIELD> 100000)*
 40 * *
iWay Data Adapter Administration for MVS and VM 8-85

IMS Record Selection Tests
The data adapter constructs three SSAs and applies them one at a time:

(SSN EQ 197548679 AND SEQFIELD GT 100000)
(SSN EQ 197548682 AND SEQFIELD GT 100000)
(SSN EQ 197548685 AND SEQFIELD GT 100000)

The resulting answer set is illustrated below:

197548682 100003 SALEH
197548685 100006 JACA

If the SSA generated by combining the conditions in all the WHERE statements is too long
to fit into the SSA buffer, the data adapter retains as much of it as possible in a qualified call
by applying the rules described in The IMS SSA Buffer on page 8-82.

Reference Sequentially Accessed Root Segments in IMS

If the root segment is the target of the SSA generated by a request, and if it has a unique
key, the data adapter assumes that IMS will use an index or randomizing scheme to locate
the segment without an exhaustive search of the root segment chain. Therefore, the data
adapter retrieves the segment with qualified GET UNIQUE calls.

Even if the assumption that there is an index or randomizing scheme for IMS to use is not
valid, as with HSAM data sources, each call starts its search at the first record in the data
source. In this case, it is preferable to describe the root segment as having no key
(SEGTYPE=S0), and not to describe any field’s alias with the KEY suffix. This causes the data
adapter to issue qualified GET NEXT calls that access the roots sequentially and maintain
the current data source position from one call to the next.

Partial Key and Multi-Segment Requests in IMS
The following topics illustrate SSAs for requests that select on a partial key and requests
that access values from multiple segments:

• Selection on a partial key.

• Multi-Segment requests.
8-86 iWay Software

Getting Started in IMS
Syntax How to Optimize Selections on a Partial Key in IMS

Record selection on a partial key can be optimized unless the data source is an HDAM data
source. The partial key must be the high-order (leftmost) portion of the key. To search on a
partial key, use a mask as the comparison value in the relation.

WHERE field LIKE 'xxx%'

where:

xxx

Are any number of characters that constitute the leftmost portion of the key.

%

Is a wildcard character indicating that any string of characters in this position and
beyond satisfies the screening criteria.

The data adapter translates the condition to a range using GE and LE. Consider the
following request:

SELECT SSN,SEQFIELD,LAST_NAME
FROM PATINFO
WHERE SSN LIKE '1975486%';

The FSTRACE4 results show that the selection test is translated to a range condition:

 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DE2 E2D54040 *PATINFO *-(SSN *
 4040406E 7EF1F9F7 F5F4F8F6 00005CE2 * >=1975486 *S*
 E2D54040 4040404C 7EF1F9F7 F5F4F8F6 *SN <=1975486*
 FFFF5D40 *::) *

To define the range of values, the data adapter appends the lowest hexadecimal value (00)
and the highest hexadecimal value (FF) to 1975486 (00 and FF are not alphanumeric
representations of numbers; therefore they do not print as such on the right side of the
dump).

The first few lines of the resulting answer set follow:

 197548679 100000 ROSANO
 197548681 100002 BORRERO
 197548682 100003 SALEH
 197548683 100004 SALGADO
 197548684 100005 JONES
 197548685 100006 JACA
 197548686 100007 PENA
 197548687 100008 FREEMAN
 .
 .
 .
iWay Data Adapter Administration for MVS and VM 8-87

IMS Record Selection Tests
Example Generating Multi-Segment Requests in IMS

When a request requires access to multiple segments, the data adapter constructs one SSA
for each segment (IMS DL/I Calls on page 8-9 explains the rules for accessing multiple
segments). If the selection criteria for a particular segment can be optimized, its
corresponding SSA is qualified.

The following request includes an equality test on PARTKEY, the root key of the DI21PART
data source, but it contains no selection criteria for the STANKEY field in the STANINFO
segment:

SELECT PARTKEY,STANKEY
FROM DI21PART
WHERE PARTKEY = '02AN960C10';

The SSA for the root segment, PARTROOT, is qualified, but the SSA for the STANINFO
segment is not qualified:

 set up SSA-Q:
 D7C1D9E3 D9D6D6E3 5C604DD7 C1D9E3D2 *PARTROOT*-(PARTK*
 C5E8407E 40F0F2C1 D5F9F6F0 C3F1F040 *EY = 02AN960C10 *
 40404040 40405D40 *) *
 set up SSA-Q:
 E2E3C1D5 C9D5C6D6 5C604040 *STANINFO*- *

The following answer set is produced:

 02AN960C10 02

The next request specifies a not equal condition on PARTKEY, the root key of the DI21PART
data source; it has no selection criteria for STANKEY:

SELECT PARTKEY,STANKEY
FROM DI21PART
WHERE PARTKEY <> '02AN960C10';

Since DI21PART is an HDAM data source, inequality is not optimized. Therefore, the SSAs for
both the PARTROOT and STANINFO segments are unqualified:

 set up SSA-Q:
 D7C1D9E3 D9D6D6E3 5C604040 *PARTROOT*- *
 set up SSA-Q:
 E2E3C1D5 C9D5C6D6 5C604040 *STANINFO*- *
8-88 iWay Software

Getting Started in IMS
The server applies the selection criteria to produce the desired report. The first several lines
in the answer set are listed below:

 02CK05CW181K 02
 02CSR13G104KL 02
 02JAN1N976B 02
 02MS16995-28 02
 02N51P3003F000 02
 02RC07GF273J 02
 02TPART01 02
 02106B1293P009 02
 02250236-001 02
 .
 .
 .

Auto Index Selection
When the Master File and FOCPSB define secondary indexes for a data source, the data
adapter analyzes each request to determine the most efficient entry point into the data
source. For information on creating a Master File and FOCPSB for use with a data source
that has secondary indexes, refer to Describing an IMS Secondary Index to the Server on
page 8-22.

The data adapter scans each request to determine whether fields used in record selection
tests are key fields, secondary indexes, or the high-order (leftmost) parts of either.
Depending on the request criteria, the data adapter selects the appropriate PCB for the
most efficient access to the data.

The PATINFO Master File describes a secondary index named IXADMD on the ADMIT_DATE
field.

In the following request, the field referenced in the WHERE condition is the field associated
with the secondary index called IXADMD:

SELECT LAST_NAME SALARY ADMIT_DATE
FROM PATINFO
WHERE ADMIT_DATE = ‘19920925’;

The trace shows that the data adapter generates a qualified SSA using the IXADMD index:

 set up SSA-Q:
 D7C1E3C9 D5C6D640 5C604DC9 E7C1C4D4 *PATINFO *-(IXADM*
 C440407E 40F1F9F9 F2F0F9F2 F55D40 *D = 19920925) *
iWay Data Adapter Administration for MVS and VM 8-89

IMS Record Selection Tests
If a request includes record selection tests on more than one field, or if a field participates in
more than one type of index, the data adapter uses the following order of precedence in
choosing the PCB to use:

1. .KEY field (primary index).

If a field in a record selection test is both a .KEY field and the high-order portion of a
secondary index, the data adapter accesses the data source using the primary index on
the .KEY field.

However, if the data source is an HDAM database, and if the request includes a range
test on a field that is both an .HKY field and a .SKY field, the data adapter accesses the
data source through the secondary index on the .SKY field. (Recall that only equality
conditions on .HKY fields generate qualified SSAs.)

2. .SKY field (secondary index).

3. .IMS field (search field).

The following example demonstrates how secondary indexes and the Auto Index Selection
feature affect SSA generation. The following Master File, AIHDAM, describes an HDAM
database. This Master File does not describe a secondary index on the key field (the DBD,
PSB, and FOCPSB do include a secondary index description; see Describing IMS Data Sources
on page 8-28):

FILE=AIHDAM ,SUFFIX=IMS ,$
SEGNAME=LANGUAGE ,SEGTYPE=S1 ,$
 FIELD=EMPLOYEE_ID6 ,ALIAS=EMPL6.HKY ,I9 ,I4 ,$
 FIELD=LANGUAGE ,ALIAS=LANG6.IMS ,A15,A15 ,$

A range test on the key field generates an unqualified SSA:

SELECT *
FROM AIHDAM
WHERE EMPLOYEE_ID6 BETWEEN 5248 AND 6393

 set up SSA-Q:
 D3C1D5C7 E4C1C7C5 5C604040 *LANGUAGE*- *
8-90 iWay Software

Getting Started in IMS
The following is the same Master File, edited to describe the secondary index on the key
field:

FILE=AIHDAM ,SUFFIX=IMS ,$
SEGNAME=LANGUAGE ,SEGTYPE=S1 ,$
 FIELD=EMPLOYEE_ID6 ,ALIAS=EMPL6.HKY ,I9 ,I4 ,$
 FIELD=LANGUAGE ,ALIAS=LANG6.IMS ,A15,A15 ,$

** SECONDARY INDEX DESCRIPTION **

GROUP=EMPLIX ,ALIAS=IXEMP6.SKY ,I9 ,I4 ,$
 FIELD=EMPLY6 ,ALIAS= ,I9 ,I4 ,$

Now, the data adapter can use the Auto Index Selection feature on the same request to
generate a qualified SSA:

SELECT *
FROM AIHDAM
WHERE EMPLOYEE_ID6 BETWEEN 5248 AND 6393

 set up SSA-Q:
 D3C1D5C7 E4C1C7C5 5C604DC9 E7C5D4D7 *LANGUAGE*-(IXEMP*
 F640406E 7E000014 805CC9E7 C5D4D7F6 *6 >= Ø*IXEMP6*
 40404C7E 000018F9 5D40 * <= 9) *
iWay Data Adapter Administration for MVS and VM 8-91

IMS UPDATE
IMS UPDATE
The IMS Data Adapter supports SQL update commands to IMS data sources without the use
of remote procedures. For example, UPDATE, INSERT, and DELETE will be translated into
equivalent IMS DL/1 calls.

General IMS UPDATE Guidelines
The Structured Query Language (SQL) is intended to be used for access to relational tables,
while IMS databases are hierarchical structures. The Data Adapter for IMS is designed to
balance both, so that IMS data structures are treated as if they were relational tables. As this
is not always possible, certain rules must be followed.

The data adapter is designed to work against a single IMS segment in one path of the IMS
database as the target of the SQL Data Manipulation Language (DML) statement. SQL set
orientated behavior (multiple updates with one SQL statement) is not supported.

The WHERE clause of the SQL statement must contain all the key fields in the path to the
target segment. If a segment does not have a key, at least one field from that segment must
be specified in the WHERE clause. Any segment referenced in the SQL query must, using the
WHERE clause, be a unique occurrence of that segment. For segments with unique keys,
this is guaranteed by IMS, but for segments that have non-unique or no keys, additional
fields must be specified in the WHERE clause to uniquely identify the segment. If additional
fields are included in the WHERE clause for any segment, including uniquely keyed
segments, they will be used in conjunction with the key, to qualify the segment.

Processing Not Supported in IMS UPDATE
The following processing is not supported in IMS update:

• Null data values.

• Embedded SELECT within INSERT.

• Cursor control, for example, WHERE CURRENT OF on UPDATE or DELETE processing.

• Variable length segments for INSERT or UPDATE using a .CNT field in the Master File.

• Positioning for RULES=(,HERE) on the SEGM statement for INSERT.

• SQL DML statements using IMS secondary indices.
8-92 iWay Software

Getting Started in IMS
Syntax How to Specify SQL INSERT in IMS

INSERT INTO mfdname [(fieldname list ...)] VALUES (value list ...)

General Rules

The following rules apply to SQL INSERT syntax:

• If you do not specify the field name list, the value list must contain values for all fields in
all segments in the Master File as long as the Master File only specifies a single path IMS
file.

• If the Master File is multi-path, the field name list must be coded and only be for a
single path.

• If you specify the field name list, the value list only needs to specify, in field name list
order, the field names supplied. As a minimum, you must supply all the key fields for all
the segments in the path to the target.

• If a segment is not present, default values will be generated for all non-keyfields not
supplied, and the missing path segment(s) will be inserted along with the target
segment.

Unique Keyed Segment

For a segment with a unique key, the keyfield value is used to insert the target segment. If
any additional fieldname=value pairs are supplied for a segment in the path, they are used
to qualify that path segment.

Any fields not supplied for the target default to type.

Non-unique Keyed Segment

• For a segment with a non-unique key, target or in the path, will be inserted, within
keyfield range, according to the RULES=(,FIRST) or RULES=(,LAST) setting for the
segment. All segment occurrences of this type whether in the path or target, will be
checked for uniqueness, within keyfield range, using the values list.

• If a non-unique segment that is a match is found before the end of the keyfield range,
the transaction will be rejected.

• If only the keyfield of the target is supplied, this must be the first segment in the
keyfield range; otherwise the transaction will be rejected. No positioning calls will be
made; therefore, RULES=(,HERE) will not be honored. IMS will default to RULES=(,FIRST)
for the keyfield value in this situation.
iWay Data Adapter Administration for MVS and VM 8-93

IMS UPDATE
Non-keyed Segment

• A segment with no key or target, or a segment in the path, will be inserted according to
the RULES=(,FIRST) or RULES=(,LAST) setting. All segment occurrences of this type,
whether in the path or target, will be checked for uniqueness using the values list.

• If a segment is found not to be unique, that is no match is found before the end of the
twin chain, the transaction will be rejected. No positioning calls will be made.
Therefore, RULES=(,HERE) will not be honored. IMS will default to RULES=(,FIRST) in this
situation.

Syntax How to Specify SQL DELETE in IMS

DELETE FROM mfdname WHERE fieldname=value [AND fieldname=value ...]

General Rules

The following rules apply to SQL DELETE syntax:

• As a minimum, you must supply all the key fields for all the segments in the path to the
target. Only one target segment will be deleted; IMS will cascade the delete to
dependent segments.

• Additional fieldname=value pairs may be included for the target segment and any
segment in the path that has no key or a non-unique key. It is recommended to use IMS
search fields for any additional fieldname=value pairs.

Unique Keyed Segments

For a segment with a unique key, the keyfield value is used to delete the target segment. If
you supply any additional fieldname=value pairs, they will be used to qualify the deletion.

Non-unique Keyed Segments

For a segment with a non-unique key, you must supply the keyfield. If the WHERE
condition(s) for this type of segment, in the path or target, do not identify a unique
occurrence, the transaction will be rejected.

Non-keyed Segments

For a segment with no key, you must supply at least one fieldname=value pair. If the WHERE
condition(s) for this type of segment, in the path or target, do not identify a unique
occurrence, the transaction will be rejected. The use of any IMS search fields for this type of
segment is highly recommended for efficiency.
8-94 iWay Software

Getting Started in IMS
Syntax How to Specify SQL UPDATE in IMS

UPDATE mfdname SET fieldname=value [SET fieldname=value...]

WHERE fieldname=value

[AND fieldname=value]

General Rules

The following rules apply to SQL UPDATE syntax:

• As a minimum, in the WHERE condition, you must supply all the key fields for all the
segments in the path to the target. Only one target segment will be updated.

• You may include additional fieldname=value pairs for the target or any segment in the
path. When additional fieldname=value pairs are present for the target segment, these
will be used for change verification protocol processing. If all target fieldname=value
pairs that are present match the IMS segment field values, the segment will be updated
with the SET fieldname values.

Unique Keyed Segments

For a segment with a unique key, the keyfield value and any additional fieldname=value
pairs are used to qualify the target segment for update.

Non-unique Keyed Segments

For a segment with a non-unique key, you must supply the keyfield. If the WHERE
condition(s) for this type of segment do not identify a unique occurrence, the transaction
will be rejected. If the set values would result in the updated segment matching an existing
segment, the transaction will be rejected.

Non-keyed Segments

For a segment with no key, you must supply at least one fieldname=value pair. If the WHERE
condition(s) for this type of segment do not identify a unique occurrence, the transaction
will be rejected. The use of any IMS search fields for this type of segment is highly
recommended for efficiency. If the set values would result in the updated segment
matching an existing segment, the transaction will be rejected.

Commit and Rollback Processing in IMS
When the IMS Data Adapter is used for any modification action, a COMMIT is issued after
each INSERT, UPDATE, or DELETE call. If the IMS segment processing is part of a logical unit
of work (LUW) that involves any relational database, then a broadcast COMMIT should be
used after the single IMS process has completed successfully. No user rollback of the IMS
process is supported. If the IMS process fails, a ROLLBACK will be issued by the data adapter,
and the user application must issue a ROLLBACK if any relational database is part of the
LUW.
iWay Data Adapter Administration for MVS and VM 8-95

IMS UPDATE
Master File for IMS UPDATE
No changes to the Master File are required for IMS UPDATE.

Syntax How to Enable Write Access for IMS UPDATE

PSB=psbname, WRITE={YES|NO}

where:

psbname

Is the name of the FOCPSB library member to use. This name must be identical to the
name of the actual PSB that IMS will access. If the member does not exist, the following
message is generated:

(EDA4261) FOCPSB MEMBER NOT FOUND: psbname

YES

Allows SQL update for this database.

NO

Does not allow SQL update for this database. This value is the default.
8-96 iWay Software

Getting Started in IMS
Example Generating IMS UPDATE

The following database and segment values will be used in all examples.

FILENAME=IMSUPDDB,SUFFIX=IMS,$
$
$SEGA has a unique KEY
SEGNAME=SEGA,SEGTYPE=S2,$
 FIELDNAME=FA1 ,ALIAS=FA1KEY.KEY ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FA2 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FA3 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
$
$SEGB has a unique KEY
SEGNAME=SEGB,SEGTYPE=S2,PARENT=SEGA,$
 FIELDNAME=FB1 ,ALIAS=FB1KEY.KEY ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FB2 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FB3 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
$
$SEGC has a unique KEY
SEGNAME=SEGC,SEGTYPE=S2,PARENT=SEGA,$
 FIELDNAME=FC1 ,ALIAS=FC1KEY.KEY ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FC2 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FC3 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
$
$SEGD has a non-unique KEY
SEGNAME=SEGD,SEGTYPE=S,PARENT=SEGC,$
 FIELDNAME=FD1 ,ALIAS=FD1KEY.KEY ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FD2 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
 FIELDNAME=FD3 ,ALIAS= ,FORMAT=A5,ACTUAL=A5,$
iWay Data Adapter Administration for MVS and VM 8-97

IMS UPDATE
The database has one record with the following field values:

Example Generating IMS UPDATE # 1

INSERT INTO IMSUPDDB VALUES('A2','AAAAA','BBBBB')

This fails, as no column list is provided and the IMS file is multi-path.

(EDA14025) COLUMN LISTS IN INSERT ARE UNEQUAL

Example Generating IMS UPDATE # 2

INSERT INTO IMSUPDDB (FA1,FA2,FA3) VALUES('A2','AAAAA','BBBBB')

This successfully inserts a second root segment.
8-98 iWay Software

Getting Started in IMS
Example Generating IMS UPDATE # 3

INSERT INTO IMSUPDDB (FA1,FB1,FB2,FB3,FC1,FC2,FC3)
VALUES('A2','A2B1','AAAAA','DDDDD','A2C1','HHHHH','JJJJJ')

This fails, as it references two paths in the IMS file.

(EDA14089) MULTIPATH INSERT, UPDATE, DELETE IS NOT SUPPORTED

Example Generating IMS UPDATE # 4

INSERT INTO IMSUPDDB (FA1,FB1,FB2,FB3)
VALUES('A2','A2B1','AAAAA','DDDDD')

This successfully inserts a new SEGB segment.

Example Generating IMS UPDATE # 5

INSERT INTO IMSUPDDB (FA1,FC1,FD1,FD2) VALUES('A1','A1C1','C1D3','DDDDD')

This fails, as the 'C1D3','DDDDD' does not uniquely describe segment SEGD. If a column is
not supplied in the value list (FD3 in this example), a blank (or zero for numeric) value for
the column will not be used to qualify the segment; therefore, this transaction is rejected.

(EDA405)TRANS 1 REJECTED DUPL: SEGD 'A1','A1C1','C1D3','DDDDD',$

The database now looks like this:
iWay Data Adapter Administration for MVS and VM 8-99

IMS UPDATE
Example Generating IMS UPDATE # 6

INSERT INTO IMSUPDDB (FA1,FC1,FD1,FD2,FD3)
 VALUES('A1','A1C1','C1D1','D1111','D1111')

INSERT INTO IMSUPDDB (FA1,FC1,FD1,FD2,FD3)
 VALUES('A1','A1C1','C1D1','D2222','D2222')

INSERT INTO IMSUPDDB (FA1,FC1,FD1,FD2,FD3)
 VALUES('A1','A1C1','C1D2','D1111','D1111')

This successfully inserts three SEGD segments for root A1.

Example Generating IMS UPDATE # 7

INSERT INTO IMSUPDDB (FA1,FC1,FD1,FD2,FD3)
 VALUES('A1','A1C2','C2D2','D2111','D2111')

This successfully inserts a new SEGC as well as a new SEGD. Default values of blanks or zeros
will be used for SEGC for any column not in the values list.

Example Generating IMS UPDATE # 8

This fails to update SEGD, as the SET values would cause a duplicate segment to be inserted.

(EDA42007) SEGMENT ALREADY EXISTS : SEGD

Example Generating IMS UPDATE # 9

DELETE FROM IMSUPDDB WHERE FA1 = 'A2'

This successfully deletes the root segment A2 and all dependents.

UPDATE IMSUPDDB SET
 FD2 =
'D1111',
 FD3 =
'D1111'
 WHERE FA1 = 'A1'
AND
 FC1 = 'A1C1'
AND
 FD1 = 'C1D1'
AND
 FD2 = 'D2222'
AND
 FD3 = 'D2222'

Matched

segment ---->

Would --->

duplicate this

segment if

update were

allowed
8-100 iWay Software

Getting Started in IMS
Example Generating IMS UPDATE # 10

This fails to delete SEGB. The FB1 key field matches, but because additional columns have
been provided in the request, these will be used to qualify the SEGB segment for deletion.
Column FB3 does not match the value in the database; therefore, the transaction is
rejected.

(EDA42005) SEGMENT NOT FOUND : SEGB

Example Generating IMS UPDATE # 11

This fails to update SEGD, as the value for FD3 does not match the database value of 'EEEEE'.
The transaction is rejected.

(EDA42005) SEGMENT NOT FOUND : SEGD

DELETE FROM IMSUPDDB WHERE
 FA1 = 'A1' AND
 FB1 = 'A1B1' AND
 FB2 = 'BBBBB' AND
 FB3 = 'CCCBB'

SEGB

FB1=A1B1
FB2=BBBBB
FB3=CCCCC

UPDATE IMSUPDDB SET FD2 =
'ZZZZZ'
 WHERE FA1 = 'A1'
AND
 FC1 = 'A1C1'
AND
 FD1 = 'C1D3'
AND
 FD2 = 'DDDDD'
AND
 FD3 = 'FFFFF'

SEGD

FD1=C1D3
FD2=DDDDD
FD3=EEEEE
iWay Data Adapter Administration for MVS and VM 8-101

IMS UPDATE
8-102 iWay Software

CHAPTER 9

9.Getting Started With Information Manager/2

Topics:

• InfoMan Data Adapter

• IBM's Information/Management

• How the Server Works With Information/
Management

• InfoMan Hardware and Software
Requirements

• Configuring the InfoMan Data Adapter

• Defining the InfoMan Data Adapter User
ID and Session ID

• InfoMan Access Control

• Server Security in InfoMan

• IBM Information/Management
Database Security

• The AUTOIMAN Configuration File,
IMANCONF

• Describing InfoMan Data Sources

• Executing AUTOIMAN

• Working With AUTOIMAN

• Master File Generation Facility in
InfoMan

• PIDT Selection Panel in InfoMan

• Retrieval PIDT Name Confirmation in
InfoMan

These topics provide an overview of the InfoMan Data
Adapter. They also provide hardware and software
requirements and configuration instructions. This
information supplements the Server for MVS manuals.
In many instances, you are advised to refer to the
server manuals for specific details on the server
environment in which this data adapter operates.
iWay Data Adapter Administration for MVS and VM 9-1

InfoMan Data Adapter
 InfoMan Data Adapter
The InfoMan Data Adapter enables you to access IBM’s Information/Management
databases using the industry standard Structured Query Language (SQL). You may access
Information/Management data from the full array of server supported platforms,
environments, and front-end tools.

You do not have to use the standard IBM Interactive System Productivity Facility (ISPF)
interface to view retrieved data. You have the option of organizing reports using server
front-end reporting facilities.

IBM's Information/Management
IBM’s Information/Management product provides a well-developed environment for
tracking large system hardware and software problems, Program Temporary Fixes (PTFs),
and change control. At many sites, the use of Information/Management has been
expanded to include more general-purpose systems. Although Information/Management
provides native query and reporting facilities, many users have suggested that Information/
Management data should be available for querying and reporting from other IBM and
third-party tools and utilities.

To provide this flexibility, iWay Software, in conjunction with IBM, has built a data adapter
for Information/Management, called the InfoMan Data Adapter. This data adapter allows
any server-enabled application program to access an IBM Information/Management
database by way of ANSI SQL.

The InfoMan Data Adapter is one of many existing data adapters that provide access to over
70 relational and non-relational data sources. The server can also perform joins with these
heterogeneous data sources using one SQL statement.

Information/Management Access
By using the native Information/Management Application Program Interface (API), the
InfoMan Data Adapter provides the most efficient combination of server and Information/
Management resources. SQL WHERE predicate search arguments are passed to
Information/Management to exploit its fast indexed retrieval characteristics. Extended
criteria searches are performed by the server to ensure full ANSI WHERE processing
expected by most SQL front-ends.
9-2 iWay Software

Getting Started With Information Manager/2
InfoMan Data Adapter Functional Overview
The InfoMan Data Adapter interfaces to Information/Management through the
Information/Management low-level API. This API allows application transactions such as
creating, updating, retrieving, and deleting records. There is also a high-level API, which
converts function calls to low-level API function calls.

Note: The high-level API is not used by the InfoMan Data Adapter.

The InfoMan Data Adapter uses the Programming Interface Communications Area (PICA),
which is a control structure, to interface with the low-level API. The data adapter inputs
specific values for the application name or user ID (PICAUSRN), the privilege class name
(PICACLSN), and the session member name (PICASESS).

The InfoMan Data Adapter also provides trace information in allocations named FSTRACE
and FSTRACE4. When tracing is enabled with FSTRACE, you can watch the Information/
Management environment control transactions as the InfoMan Data Adapter issues them
to the Information/Management database. This trace information is useful for debugging
purposes.

The InfoMan Data Adapter interfaces seamlessly with the server. It allows many users access
from client platforms, such as UNIX, and Windows. With the InfoMan Data Adapter you
benefit from having Information/Management data appear in your respective client
applications.

How the Server Works With Information/Management
This topic describes how the server uses Information/Management S-words. An S-word, or
structured word, is a keyword that identifies the contextual meaning of a collected item of
data in Information/Management.

The server uses Information/Management PIDT views as table or file names, and maps
Information/Management S-words to column or field defaults. You can assign more friendly
column names to S-words during the AUTOIMAN definition process. Also, you can define
virtual columns to provide functions and data types not present in the Information/
Management database.
iWay Data Adapter Administration for MVS and VM 9-3

InfoMan Hardware and Software Requirements
InfoMan Hardware and Software Requirements
Hardware Requirements

The following hardware specifications must be met to use the InfoMan Data Adapter:

• An IBM or IBM-compatible mainframe, supporting MVS/ESA, Release 4.3 or higher.

• 98K of space, required by the specific modules that constitute the InfoMan Data
Adapter in qualif.EDALIB.LOAD.

Software Requirements

The following minimum software levels are required for the operation of the InfoMan Data
Adapter:

• Server for MVS, Release 3.1.6 or higher, plus applicable PTFs.

• IBM Information/Management, Version 6, Release 1 for MVS/ESA.

• InfoMan Data Adapter.

Configuring the InfoMan Data Adapter
The InfoMan Data Adapter is installed as part of the standard server installation procedure.
Complete Steps 1, 2, and 3 after the server distribution tape has been unloaded. For
information regarding the installation procedure, refer to the iWay Server Installation
manual.

Server JCL for IBM Information/Management
The InfoMan Data Adapter can be enabled in a server. The following is an example of server
JCL containing the appropriate allocations for an IBM Information/Management database.
9-4 iWay Software

Getting Started With Information Manager/2
Syntax How to Enable the InfoMan Data Adapter

//JOBCARD
//***
//*
//* Server JCL
//*
//* with InfoMan Data Adapter libraries.
//*
//***
//EDASERVE EXEC PGM=SSCTL,
//STEPLIB DD DISP=SHR,DSN=qualif.EDALIB.LOAD
 .
 .
 .
// DD DISP=SHR,DSN=INFOFVT.V6R1M0.BLX1.LOAD
// DD DISP=SHR,DSN=INFOFVT.V6R1M0.VSAMLOAD
// DD DISP=SHR,DSN=INFOFVT.V6R1M0.FIXLOAD
// DD DISP=SHR,DSN=INFOFVT.V6R1M0.SBLMMOD1
// DD DISP=SHR,DSN=INFOFVT.V6R1M0.SESSLOAD
 .
 .
 .
//MASTER DD DISP=SHR,DSN=qualif.MASTER.DATA
//ACCESS DD DISP=SHR,DSN=qualif.ACCESS.DATA
//*FSTRACE DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=132,RECFM=F)
//*FSTRACE4 DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=132,RECFM=F)

where:

STEPLIB

Is the allocation for the server load library, qualif.EDALIB.LOAD. Allocate this library
before any IBM Information/Management data sets or other system load libraries.

All libraries in STEPLIB must be APF-authorized in order for the server load modules to
run.

If your installation uses non-APF authorized libraries, you must allocate only
qualif.EDALIB.LOAD (which must be APF-authorized) in STEPLIB, and all non-APF
authorized libraries under ddname EDALIB.

qualif

Is the high-level qualifier for the data set.

MASTER

Is the allocation for the qualif.MASTER.DATA data set, in which Master Files are found.

The AUTOIMAN facility will create Master Files to describe IBM Information/
Management data to the server.
iWay Data Adapter Administration for MVS and VM 9-5

Defining the InfoMan Data Adapter User ID and Session ID
ACCESS

Is the allocation for the qualif.ACCESS.DATA data set, in which Access Files are found.

The AUTOIMAN facility will create Access Files to describe IBM Information/
Management data to the server.

FSTRACE

If uncommented, logs all trace output from the InfoMan Data Adapter. FSTRACE creates
an entry for each retrieved record, and is a useful method for logging all
communication with the IBM Information/Management database.

FSTRACE4

If uncommented, logs only trace output summaries. FSTRACE4 displays Program
Interface Argument Table (PIAT) criteria, and the number of hits to the IBM Information/
Management database (that is, the number of records that satisfied the search criteria).
It is effective in filtering out the additional output that FSTRACE provides.

Defining the InfoMan Data Adapter User ID and Session ID
The InfoMan Data Adapter interfaces with the low-level InfoMan Application API. Since the
low-level API acquires application parameters from the Program Interface Communications
Area (PICA), the InfoMan Data Adapter inputs certain pre-defined parameters to PICA.

PICA Parameters
PICA parameters of special interest to the Information/Management database
administrators include:

• PICAUSRN: Application ID or User ID

• PICASESS: Session Member Name

• PICACLSN: Privilege Class Name

• PICADBID: Database ID

• PICATINT: Transaction Time Interval

The Information/Management database uses the application ID PICAUSRN in conjunction
with the privilege class name PICACLSN to establish the level of user accessibility permitted
by the database.

If you specify a PICAUSRN (application ID) and/or PICACLSN (privilege class name) in an
Access File, the InfoMan Data Adapter uses it. If you do not, the InfoMan Data Adapter
inputs a PICAUSRN with a default eight-character value of SAMPID, and a PICACLSN with a
default eight-character value of MASTER. During installation these default values must be
defined and recognized by the Information/Management database. The AUTOIMAN facility
automatically creates the Access File with the specified PICAUSRN and PICACLSN values.
9-6 iWay Software

Getting Started With Information Manager/2
The PICASESS (session member name) is also defined in the Access File. If you do not specify
a PICASESS value in the Access File, the default session name BLGSES00 is used. In order for
your Information/Management database to recognize the default session name, you can
define the default session BLGSES00 to your Information/Management database with full
MASTER class privileges. The next topic explains how to set up the default user ID, class
name, and session ID in the Information/Management database.

The PICATINT (transaction time interval) is the maximum time in seconds for a transaction
to complete in the IBM API. Specify this parameter in the Access File.

TINT=x

where:

x

Is the transaction time interval in seconds. The default value is 0.

Setting Up the InfoMan Data Adapter User ID, Privilege Class Name, and Session ID
The following steps are required to set up the default InfoMan Data Adapter user ID (or
application ID), the default privilege class name, and the default session ID.

1. Define SAMPID as an eligible user ID accessible and available to the Information/
Management database. The InfoMan Data Adapter will interface to the low-level API
with:

PICAUSRN='SAMPID'

You may use the Information/Management ISPF panels to do this. SAMPID must also be
a member of the MASTER class with full privileges.

2. Define session BLGSES00 as a session with full privileges using the Information/
Management ISPF panels. This session is a CSECT, and can be created, assembled, and
link-edited by your Information/Management administrator. The session name
BLGSES00 must be recognized and defined in the Information/Management database.

3. The session member BLGSES00 must be in a load library concatenation sequence
available to Information/Management. Place the assembled and link-edited BLGSES00
member in STEPLIB DD of your server JCL.
iWay Data Adapter Administration for MVS and VM 9-7

Defining the InfoMan Data Adapter User ID and Session ID
Overriding the Default PICA Values in an Access File
You can override the default PICA values by specifying them in an Access File. The following
table shows the PICA parameters, their Access File keywords, and their default values.

To change a default in an Access File, edit the text following its keyword in the Access File.
The following is an example of an Access File with some override values:

DBID=5,ITABLE=TS0032I,RTABLE=TS0032R,TINT=600,
SESS=MYSESS1,USRN=JOHN,CLSN=MASTER,$

In this example, DBID (database ID) and CLSN (privilege class name) specify the default
values. SESS (session member name) has an override value that replaces BLGSES00, USRN
(user ID) has an override value that replaces SAMPID, and the maximum transaction internal
is set to 600 seconds.

Additional InfoMan Access File Parameters
You can include an IGNORE= parameter in the Access File to specify the processing action
for database errors.

These errors indicate logical errors in the INFOMAN database. For more information, see the
IBM API manual.

PICA Parameter Access File Keyword Default Value

PICAUSRN USRN ‘SAMPID’

PICASESS SESS ‘BLGSES00’

PICACLSN CLSN ‘MASTER’

PICADBID DBID 5

PICATINT TINT 0

IGNORE=ALL Allows all database errors to be processed as if they were not
problematic. This is not recommended.

IGNORE=NONE Allows no database errors to pass through. A message is
issued, relevant data is logged in FSTRACE, and processing is
halted.

IGNORE=TRUNC Allows only field truncation errors to be passed through and
the truncated data is returned. A message is logged in
FSTRACE, and processing continues.
9-8 iWay Software

Getting Started With Information Manager/2
InfoMan Access Control
The following topics describe InfoMan access control:

• Server Security

• IBM Information/Management Database Security

In any computer system, it is important that data be secured from unauthorized access.
Both InfoMan and the server provide security mechanisms to ensure that users have access
to only those objects for which they have authorization.

Server Security in InfoMan
To activate server security, you must enable the EXTSEC parameter in the EDASERVE DD
data set member as follows:

EXTSEC=ON

This setting will default to the security available from your system environment. For more
information on server security, see the iWay Server Installation manual.

IBM Information/Management Database Security
At the IBM Information/Management database level, security is set by defining a privileged
class and assigning users to it. A system administrator establishes the display, create, delete,
or copy function and the data record type. For more information on how to define user IDs
to a privileged class, see your System Administrator or IBM’s The Information/Management
User’s Guide for MVS/ESA, Version 6, Release 1.
iWay Data Adapter Administration for MVS and VM 9-9

The AUTOIMAN Configuration File, IMANCONF
The AUTOIMAN Configuration File, IMANCONF
The AUTOIMAN configuration file, IMANCONF, contains information relevant to the PIDT
Selection Library, the Master File, and the Access File. Customize this file according to the
directions that follow.

Note: If ddname FOCEXEC is allocated to concatenated partitioned data sets, IMANCONF
must reside in the first partitioned data set.

Editing IMANCONF
The IMANCONF configuration file consists of three lines:

1. INFOFVT.V6R1M0.SBLMFMT

2. qualif.MASTER.DATA

3. qualif.ACCESS.DATA

Line 1 is the PIDT Selection Library. INFOFVT.V6R1M0.SBLMFMT is the default provided with
Information/Management. You may keep this library as the default, or enter a different PIDT
Selection Library name.

Lines 2 and 3 are the partitioned data sets (PDSs) for the Master and Access Files. In both
lines, substitute your user ID for qualif. The PDS names can remain as shown, or be changed.
Remember that only cataloged PDSs can be referenced.

Note: Only the first 35 characters of each of the lines will be read

Maintaining Multiple Configuration Files in InfoMan
In order to maintain multiple IMANCONF configuration files, you must copy the IMANCONF
configuration file into your own IMANCONF partitioned data set. Follow the editing
instructions in Editing IMANCONF to customize the file.

Other InfoMan Editing Options
The three lines of data that comprise the IMANCONF configuration file are the permanent
AUTOIMAN defaults, and also appear on the AUTOIMAN screen, Master File Generation
Facility for InfoMan Main Menu. You can change the PIDT Selection Library and the Master
and Access Files on the Main Menu. However, the changes you make on the Main Menu are
effective only for the duration of the AUTOIMAN session, and do not become permanent
AUTOIMAN defaults.
9-10 iWay Software

Getting Started With Information Manager/2
Describing InfoMan Data Sources
The following topics describe InfoMan data sources:

• Executing AUTOIMAN

• Working With AUTOIMAN

• Master File Generation Facility

To access an existing table or view using the server, you must first describe it in a Master File
and an Access File. The AUTOIMAN facility enables the creation and cataloging of Master
Files and Access Files automatically. AUTOIMAN prompts you for Retrieval and Inquiry
Information/Management Program Interface Data Table (PIDT) names, which are used to
create the Master and Access Files.

The AUTOIMAN facility gives you the ability to do the following:

• Select fields to be incorporated into a Master File.

• Change the usage format, which determines the way data displays in a report, and how
it is manipulated when making calculations for a report. This is useful for date fields and
character fields that hold numeric data. For example, a priority field that has a usage
format of A2 may be changed in AUTOIMAN to any integer format for summing or
averaging purposes.

• Change the default field name to a unique and more meaningful field name. By default,
AUTOIMAN suffixes a number (preceded by an underscore) to the Information/
Management P-word to make it unique. AUTOIMAN makes it possible for you to
overwrite this field name with a more meaningful name.

Note: A P-word (prefix word) is a keyword used in a search argument that identifies
which field in the database corresponds with the data being searched.
iWay Data Adapter Administration for MVS and VM 9-11

Executing AUTOIMAN
Executing AUTOIMAN
To execute AUTOIMAN, you must:

1. Run the EDAAUTO list qualif.EDACTL.DATA(EDAAUTO). The main menu for execution of
the auto procedures opens:

2. Choose INFOMAN from the main menu for the execution of the auto procedures.

Working With AUTOIMAN
On a color monitor, AUTOIMAN screens display the following colors:

Instructions:Place cursor on the type of File Description
you wish
to translate and then press ENTER. Use PF3 to Quit.

 DB2

 IDMS

 ADABAS

 DATACOM

 INFOMAN

 Cobol FD

 NOMAD

Screen element Color

Input fields White

Fixed fields Light green

F or PF key instructions Pale yellow

Screen headings Pale yellow

Messages within a screen Light green

Messages between screens Red
9-12 iWay Software

Getting Started With Information Manager/2
Movement Within Screens in InfoMan
Movement on one screen is controlled by the tab key, the four directional arrow keys, and
the programmed function (F or PF) keys. Use the Enter key to go from one screen to
another.

When you press F12 on any screen, the previous screen displays. Press F3 if you want to exit
AUTOIMAN.

Note: In this manual, programmed function keys are referred to as F keys.

Help in InfoMan
Numerous Help screens are available in AUTOIMAN. To invoke Help, move the cursor to a
field that you want information on and press F1. To exit a help screen and return to your
previous location, press Enter.

Note: On the Main Menu, you can obtain Help only on an input field. On all other screens in
AUTOIMAN, you can invoke help from anywhere on the screen.

Master File Generation Facility in InfoMan
When you select InfoMan on the EDAAUTO selection screen, the Master File Generation
Facility for InfoMan Main Menu displays. You specify environment parameters on this menu.

On this menu you can obtain field-specific help by pressing F1. To exit AUTOIMAN, press F3.

AUTOIMAN Master File Generation Facility for InfoMan
 Main Menu

Retrieval PIDT =========> (Leaving PIDT
blank will
Inquiry PIDT =========> display
selection list)

Master/Access File Name =========> (Optional)
Replace existing MFD,Access File ? ==> N (Y/N)

DBID =========> 5
Session Member =========> BLGSES00
Application ID =========> SAMPID
Class Name =========> MASTER
PIDT Selection Library =========>
INFOFVT.V6R1M0.SBLMFMT
Master File Destination =========> qualif.MASTER.DATA
Access File Destination =========> qualif.ACCESS.DATA

F1=Help F3=Exit
iWay Data Adapter Administration for MVS and VM 9-13

Master File Generation Facility in InfoMan
If you press Enter on this menu without having entered a valid Retrieval PIDT and Inquiry
PIDT, the PIDT Selection Panel is displayed, to assist you in selecting PIDT names. When you
have completed entry of PIDTs and other necessary information on this menu and pressed
Enter, the Field Selection for Retrieval PIDT Name screen is displayed.

The following table provides field descriptions for the AUTOIMAN Main Menu.

Field Description

Retrieval PIDT You must enter the Retrieval PIDT. If you do not, a selection
list, from which you may select a Retrieval PIDT, displays after
you press Enter.

If you enter a Retrieval PIDT, it must exist in the PIDT
Selection Library listed on the Main Menu. Enter the correct
library if the default library name generated by AUTOIMAN is
inappropriate.

The next field, the Inquiry PIDT, follows the same rules.
Additionally, you must enter both PIDTs to continue, or the
PIDT Selection Panel displays.

Inquiry PIDT You must enter the Inquiry PIDT. If you do not, a selection list,
from which you may select an Inquiry PIDT, displays after you
press Enter.

If you enter an Inquiry PIDT, it must exist in the PIDT
Selection Library listed on the Main Menu. Enter the correct
library if the default library name generated by AUTOIMAN is
inappropriate.

The preceding field, the Retrieval PIDT, follows the same
rules. Additionally, you must enter both PIDTs to continue, or
the PIDT Selection Panel displays.

Master/Access File
Name

You can specify a name for the Master and Access File or
leave this field blank. If blank, the name will default to the
specified Retrieval PIDT name.

Replace Existing MFD,
Access File?

This message displays if you select a Retrieval PIDT for which
a Master File and Access File already exist. You can enter Y or
N (the default). If you enter Y, the new Master File and Access
File will replace the existing file.
9-14 iWay Software

Getting Started With Information Manager/2
DBID This 1-character database identifier field is required. It is used
as input to the PICADBID field of the PICA block when the
data adapter is communicating to the Information/
Management database. The default value of 5 is used to
indicate a read access type to the Information/Management
database. If you want to access another Information/
Management type database with other identifiers, you can
do so by specifying its DBIDs in this field.

Session Member This is a 7- to 8-character session member name used as
input to the PICASESS field of the PICA block when the data
adapter is communicating to the Information/Management
database. Specify the session member appropriate for your
retrieval PIDT. This session member must be assembled,
linked, and defined to your Information/Management
database.

Application ID This is a 1- to 8-character name that identifies the user
application to the Information/Management database. It will
be used as input to the PICAUSRN field of the PICA block
when the data adapter communicates to the Information/
Management database. Specify the application ID
appropriate for your retrieval PIDT. This application ID must
be valid in your Information/Management database.

Class Name This is a 1- to 8-character privilege class name used by the
application when executing a transaction. It is used as input
to the PICACLSN field of the PICA block when the data
adapter communicates to the Information/Management
database. Specify the appropriate privilege class for your
application ID. This privilege class name must be valid in your
Information/Management database.

PIDT Selection Library This library is the partitioned data set containing all Retrieval
and Inquiry PIDTs. AUTOIMAN can access only PIDTs that are
in the library specified here.

Master File Destination This is the partitioned data set that stores the new Master
File. The partitioned data set must be cataloged.

Access File Destination This is the partitioned data set that stores the new Access
File. The partitioned data set must be cataloged.

Field Description
iWay Data Adapter Administration for MVS and VM 9-15

PIDT Selection Panel in InfoMan
PIDT Selection Panel in InfoMan
If you do not specify a valid Retrieval PIDT and Inquiry PIDT on the Main Menu, the PIDT
Selection Panel appears:
9-16 iWay Software

Getting Started With Information Manager/2
 AUTOIMAN PIDT Selection Panel
Page 1

 _ BLGOZ11 _ BLMPMHF _ BLMPRRU _ BLMZZ41 _ BTNRPRCR _
BTNRZZ3A
 _ BLGOZ14 _ BLMPMHS _ BLMPRSC _ BLMZZ42 _ BTNRPRPR _
BTNRZZ3B
 _ BLGPRAL _ BLMPMSC _ BLMPRSF _ BLMZZ43 _ BTNRPR10 _
BTNRZZ31
 _ BLGPRBK _ BLMPMSF _ BLMPRSPS _ BLMZZ44 _ BTNRPR20 _
TS0AF8C
 _ BLGPRGR _ BLMPRAR _ BLMPRSR _ BLMZZ45 _ BTNRPR30 _
TS0AF8CP
 _ BLGPROZ _ BLMPRCD _ BLMPRSY _ BLMZZ46 _ BTNRPR40 _
TS0AF8I
 _ BLGPRUS _ BLMPRCH _ BLMZZ12 _ BTNCHSLR _ BTNRPR50 _
TS0AF8IP
 _ BLGRPR10 _ BLMPRCPS _ BLMZZ13 _ BTNPRCH _ BTNRPR60 _
TS0AF8R
 _ BLGRPR20 _ BLMPRCR _ BLMZZ14 _ BTNPRSC _ BTNRPR70 _
TS0AF8RP
 _ BLGRPR30 _ BLMPRCS _ BLMZZ21 _ BTNPRSLR _ BTNRZZ10 _
TS0AF8U
 _ BLGR8FLO _ BLMPRFH _ BLMZZ22 _ BTNRCH10 _ BTNRZZ14 _
TS0AF8UP
 _ BLGR8FOU _ BLMPRFS _ BLMZZ23 _ BTNRCH20 _ BTNRZZ16 _
TS0B0CC
 _ BLGR8PLA _ BLMPRHC _ BLMZZ31 _ BTNRCH30 _ BTNRZZ2A _
TS0B0CCP
 _ BLGR8POL _ BLMPRHF _ BLMZZ32 _ BTNRCH40 _ BTNRZZ2B _
TS0B0CI
 _ BLGR8STE _ BLMPRHS _ BLMZZ33 _ BTNRCH45 _ BTNRZZ2C _
TS0B0CIP
 _ BLGR8SUR _ BLMPRPC _ BLMZZ34 _ BTNRCH50 _ BTNRZZ21 _
TS0B0CR
 _ BLGZZ11 _ BLMPRPPS _ BLMZZ35 _ BTNRGROA _ BTNRZZ24 _
TS0B0CRP
 _ BLMPMHC _ BLMPRPR _ BLMZZ36 _ BTNRPERS _ BTNRZZ25 _
TS0B0CU

 Enter R (Retrieval) and I (Inquiry) F1=Help F3=Exit
F5=Rfind
 F6=Search F7=Backward F8=Forward F12=Cancel
iWay Data Adapter Administration for MVS and VM 9-17

PIDT Selection Panel in InfoMan
This panel lists all of the PIDTs found in the PIDT Selection Library shown on the Main Menu.

Help is accessed with F1. You can exit AUTOIMAN with F3. You can return to the previous
screen, the Main Menu, using F12. To page forward, press F8. To page backward, press F7. To
locate PIDTs, F6 and F5 are available. They are explained in detail in Using the F6 Search and
F5 Rfind Keys on the PIDT Selection Panel on page 9-18.

The screen’s page number is in the top right corner.

Entering Data on the PIDT Selection Panel
The PIDT Selection Panel displays Retrieval and Inquiry PIDT names. You can specify a
Retrieval PIDT by placing an R before its name, and an Inquiry PIDT by placing an I before its
name (the R and I are not case-sensitive).

Note that if you enter either a Retrieval or Inquiry PIDT on the Main Menu, the PIDT name
displays on the PIDT Selection Panel with either an R or an I before it. You may use this
choice or select another.

Press Enter to continue.

Using the F6 Search and F5 Rfind Keys on the PIDT Selection Panel
When you select Search (F6), the library names remain on screen and a field appears at the
bottom of the screen where you can enter a search string.
9-18 iWay Software

Getting Started With Information Manager/2
You can enter up to eight characters in the search string. It can contain all or any part of a
PIDT name. However, you cannot include blanks. After inputting the string, press Enter to
begin the search. AUTOIMAN searches the PIDT list for the first occurrence of the string.

 AUTOIMAN PIDT Selection Panel
Page 1

 _ BLGOZ11 _ BLMPMHF _ BLMPRRU _ BLMZZ41 _ BTNRPRCR _
BTNRZZ3A
 _ BLGOZ14 _ BLMPMHS _ BLMPRSC _ BLMZZ42 _ BTNRPRPR _
BTNRZZ3B
 _ BLGPRAL _ BLMPMSC _ BLMPRSF _ BLMZZ43 _ BTNRPR10 _
BTNRZZ31
 _ BLGPRBK _ BLMPMSF _ BLMPRSPS _ BLMZZ44 _ BTNRPR20 _
TS0AF8C
 _ BLGPRGR _ BLMPRAR _ BLMPRSR _ BLMZZ45 _ BTNRPR30 _
TS0AF8CP
 _ BLGPROZ _ BLMPRCD _ BLMPRSY _ BLMZZ46 _ BTNRPR40 _
TS0AF8I
 _ BLGPRUS _ BLMPRCH _ BLMZZ12 _ BTNCHSLR _ BTNRPR50 _
TS0AF8IP
 _ BLGRPR10 _ BLMPRCPS _ BLMZZ13 _ BTNPRCH _ BTNRPR60 _
TS0AF8R
 _ BLGRPR20 _ BLMPRCR _ BLMZZ14 _ BTNPRSC _ BTNRPR70 _
TS0AF8RP
 _ BLGRPR30 _ BLMPRCS _ BLMZZ21 _ BTNPRSLR _ BTNRZZ10 _
TS0AF8U
 _ BLGR8FLO _ BLMPRFH _ BLMZZ22 _ BTNRCH10 _ BTNRZZ14 _
TS0AF8UP
 _ BLGR8FOU _ BLMPRFS _ BLMZZ23 _ BTNRCH20 _ BTNRZZ16 _
TS0B0CC
 _ BLGR8PLA _ BLMPRHC _ BLMZZ31 _ BTNRCH30 _ BTNRZZ2A _
TS0B0CCP
 _ BLGR8POL _ BLMPRHF _ BLMZZ32 _ BTNRCH40 _ BTNRZZ2B _
TS0B0CI
 _ BLGR8STE _ BLMPRHS _ BLMZZ33 _ BTNRCH45 _ BTNRZZ2C _
TS0B0CIP
 _ BLGR8SUR _ BLMPRPC _ BLMZZ34 _ BTNRCH50 _ BTNRZZ21 _
TS0B0CR
 _ BLGZZ11 _ BLMPRPPS _ BLMZZ35 _ BTNRGROA _ BTNRZZ24 _
TS0B0CRP
 _ BLMPMHC _ BLMPRPR _ BLMZZ36 _ BTNRPERS _ BTNRZZ25 _
TS0B0CU

 Search string:

 F1=Help F12=Cancel ENTR=Search
iWay Data Adapter Administration for MVS and VM 9-19

PIDT Selection Panel in InfoMan
If the search is not successful, the message Search string not found displays on the lower
portion of the screen. To continue using the AUTOIMAN search facility, check that you
entered the string correctly, or enter another string.

If the search is successful, the first PIDT containing the search string displays in the top left
corner of the screen, and the bottom of the screen changes back to its appearance on the
first PIDT Selection Panel. You can then use the F5 (Rfind) key.

You can specify Retrieval and Inquiry PIDTs on this screen, as described in Entering Data on
the PIDT Selection Panel on page 9-18.

The AUTOIMAN Rfind (F5) feature is an extension of search. After a search, each time you
press F5, the next PIDT that contains the search string appears in the top left corner of the
page.

Rfind works independently of the actual screen image. It searches from the location of the
last matching PIDT, and forwards the screen, as requested, until it has found all occurrences
of the string. The message Search string not found displays if additional occurrences cannot
be found.

If you need to see the name of the string you are refinding, press F6 for Search. The search
string input field displays the most recently searched string. To continue refinding, press F12
to cancel the search screen, and then press F5 for Rfind.

Field Selection for Retrieval PIDT Name in InfoMan
The Field Selection screen displays field data read from the selected Retrieval PIDT. The
Retrieval PIDT name is shown in the screen title.

On this screen you select the fields to include in the new Master File. You can edit the
Fieldname and Usage fields.
9-20 iWay Software

Getting Started With Information Manager/2
F1 is Help. F12 is Cancel, which takes you to the previous screen. F3 ends your AUTOIMAN
session. F8 (PgDown) scrolls down the list, and F7 (PgUp) scrolls up. F9 is a toggle key and
jumps either to the beginning or the end of the list. F10, also a toggle key, selects either all
of the fields or none.

The screen’s page number displays in the top right corner. In the lower right corner, the
number of fields on the screen, and their relationship to the total number of fields in the
file, are shown. For example, 1/16 OF 149 means that the file contains 149 fields, and that
fields 1 through 16 appear on the screen.

 AUTOIMAN Field Selection for TS0032R
Page 3

 Select Fieldname Alias Usage Actual
Child
 ------ --------- ----- ----- ------

 _ DATX_33 IM00SD002 YYMD A6MDY
 _ DEVF_98 IMPRDTY A007 A007
Y
 _ DEVS_76 IMPSDTY A007 A007
Y
 _ DSTN_135 IM0LDDST0 A005 A005
 _ ENVF_104 IMPRENV A010 A010
Y
 _ ENVS_84 IMPSENV A010 A010
Y
 _ FEAN_77 IMPSFEA A012 A012
Y
 _ FLD_1 //S/TXS A012 A012
 _ FLD_2 IMDIAENT0 A013 A013
 _ FLD_26 IM0TXCA00 A045 A045
 _ FLD_28 IMDIASTA0 A011 A011
 _ FLD_54 IMDIACLO0 A010 A010
 _ FLD_69 IM0TX0S00 A044 A044
 _ FLD_70 IM0TX0A00 A044 A044
 _ FLD_71 IM0TX0R00 A044 A044
 _ FLD_72 IM0TX0L00 A044 A044
 Enter 'S' to select fields 33/48 OF
149

1=Help 3=End 5=Rfind 6=Search 7=PgUp
8=PgDown
9=Top/Bot10=All/None 12=Cancel
iWay Data Adapter Administration for MVS and VM 9-21

PIDT Selection Panel in InfoMan
Using the F6 Search and F5 Rfind Keys on the Field Selection Screen in InfoMan
F6 Search and F5 Rfind on the Field Selection screen can help you locate field names or
aliases. Their usage is similar to the PIDT Selection Panel Search and Rfind facilities.

F6 Search in InfoMan
When you select F6 for Search, the field names remain on screen, but at the bottom of the
screen a field displays, where you can enter a search string.

You can enter up to nine characters in the search string. It can contain all or any part of a
field name or an alias. However, you cannot include blanks. After you specify the string, to
begin the search, press Enter to search for a file name, or press F6 to search for an alias.
AUTOIMAN searches the list of field names or aliases for the first occurrence of the string.

 AUTOIMAN Field Selection for TS0032R
Page 3

 Select Fieldname Alias Usage Actual
Child
 ------ --------- ----- ----- ------

 _ DATX_33 IM00SD002 YYMD A6MDY
 _ DEVF_98 IMPRDTY A007 A007
Y
 _ DEVS_76 IMPSDTY A007 A007
Y
 _ DSTN_135 IM0LDDST0 A005 A005
 _ ENVF_104 IMPRENV A010 A010
Y
 _ ENVS_84 IMPSENV A010 A010
Y
 _ FEAN_77 IMPSFEA A012 A012
Y
 _ FLD_1 //S/TXS A012 A012
 _ FLD_2 IMDIAENT0 A013 A013
 _ FLD_26 IM0TXCA00 A045 A045
 _ FLD_28 IMDIASTA0 A011 A011
 _ FLD_54 IMDIACLO0 A010 A010
 _ FLD_69 IM0TX0S00 A044 A044
 _ FLD_70 IM0TX0A00 A044 A044
 _ FLD_71 IM0TX0R00 A044 A044
 _ FLD_72 IM0TX0L00 A044 A044
 Search string:
 F1=Help ENTR=Search Field F6=Search Alias
F12=Cancel
9-22 iWay Software

Getting Started With Information Manager/2
If the search is not successful, the message Search string not found displays on the lower
portion of the screen. To continue using the AUTOIMAN search facility, check that you
entered the string correctly, or enter another string.

If the search is successful, the first field name or alias containing the search string displays in
the top left corner of the screen, and the bottom of the screen changes back to its
appearance on the first Field Selection for PIDT Name screen. You can then use the F5
(Rfind) key.

F5 Rfind in InfoMan
The AUTOIMAN Rfind feature is an extension of search. After a search, each time you press
F5, the next PIDT that contains the search string appears in the top left corner of the page.

Rfind works independently of the actual screen image. It searches from the location of the
last matching PIDT, and forwards the screen, as requested, until it has found all occurrences
of the string. The message Search string not found displays if additional occurrences cannot
be found.

If you need to see the name of the string you are refinding, press F6 for Search, and the
search string input field displays the most recently searched string. To continue refinding,
press F12 to Cancel the search screen, and then press F5 for Rfind.

Making Changes in Field Descriptions in InfoMan
You can change the Fieldname and the Usage format on the Field Selection screen, but you
cannot change the Alias, Actual, and Child columns.

Field Description

Fieldname You may enter a new Fieldname of up to 15 characters. Duplicate
field names should not be used. A duplicate field name will not
cause an error in AUTOIMAN, but could cause unpredictable
results when working with the newly created Master File.

Usage You may enter a new Usage field of up to six characters. For non-
date fields, it may be any alphanumeric or integer format.
iWay Data Adapter Administration for MVS and VM 9-23

Retrieval PIDT Name Confirmation in InfoMan
Selection in InfoMan
On the Field Selection panel, enter an S in the Select column to select a field. F10 is a toggle
key, and can be used to select all of the fields, or none.

You can select only field names with aliases. If you select a field name that does not have an
alias, a message appears.

Note: You must select at least one non-child field in order to continue working in
AUTOIMAN.

Press Enter to continue.

Retrieval PIDT Name Confirmation in InfoMan
The confirmation screen displays the choices you have made during your AUTOIMAN
session and permits you to either confirm them or change them. AUTOIMAN displays the
Retrieval PIDT name in the screen heading.

Only the F12 key (Cancel) is active, which takes you to the previous screen. To confirm your
selections, press Enter.

 AUTOIMAN TS0032R Confirmation

 Total fields selected : 8
 Child fields selected : 2

 Master File : AAA
 Location : qualif.MASTER.DATA

 Access File : AAA
 Location : EDABXV.ACCESS.DATA
 DBID = 5 Session Member =
BLGSES00
 Inquiry PIDT = TS0032I Application ID =
SAMPID
 Retrieval PIDT = TS0032R Class Name =
MASTER

 ENTR=Confirm PF12=Cancel
9-24 iWay Software

Getting Started With Information Manager/2
Changing Your Selections in InfoMan
The following table provides descriptions of the fields on the Retrieval PIDT Name
Confirmation panel.

Confirming Your Choices in InfoMan
To confirm your choices, press Enter. The message

Generating Master/Access File Description

displays, and AUTOIMAN returns to the Main Menu.

Field Description

Total Fields Selected If you want to change the total number of fields you have
selected, press F12 to return to the Field Selection screen,
and reselect your choices.

Child Fields Selected Of the total number of fields selected, this field displays the
number of child fields. On the Field Selection for Retrieval
PIDT Name screen, child fields are identified with a Y in the
Child column. In the newly created Master File, each child
field is placed in its own segment.

Master File Name and
Location

To change the Master File name and its location, use the F12
key to return to the AUTOIMAN Main Menu.

Access File Name and
Location

To change the Access File name and its location, use the F12
key to return to the AUTOIMAN Main Menu.

DBID, Session Member,
Application ID, Class
Name

To change the DBID, Session Member, Application ID, and
Class Name, use the F12 key to return to the AUTOIMAN Main
Menu.
iWay Data Adapter Administration for MVS and VM 9-25

Retrieval PIDT Name Confirmation in InfoMan
9-26 iWay Software

CHAPTER 10

10.Getting Started in MODEL 204

Topics:

• Overview

• Environment

• Ease of Use

• Efficiency

• Security

• Installing the MODEL 204 Data
Adapter

• Preparing the Adapter Run-Time
Libraries

• Meeting the Adapter Run-Time
Requirements

• Mapping Concepts in MODEL 204

• Mapping MODEL 204 and Server
Relationships

• MODEL 204 Master Files

• MODEL 204 Access Files

• Summary of Mapping Rules

• Advanced Reporting Techniques

• MODEL 204 HLI Calls

• Screening Conditions and MODEL
204 HLI Calls

• Adapter Environmental Commands

The MODEL 204 Adapter enables the server to access
MODEL 204 files, either as individual files or as groups. The
server is compatible with the MODEL 204 environment and
fully supports its data model.

Users with any level of expertise, from beginners to
advanced data processing professionals, can take
advantage of the data retrieval and analysis facilities of the
adapter. These range from easy-to-use, menu-driven query
tools to a powerful reporting language with rich syntax
that can satisfy virtually any requirement. All facilities are
tightly integrated, each referring to Master and Access Files
for transparent access to the underlying data file. Users
need not be concerned about the details of the files,
navigational techniques for retrieval, or subroutines that
may use conventional programming languages.

Server concepts map easily to those of MODEL 204. For
example, the server represents MODEL 204 record types as
server segments. You can represent a MODEL 204 field that
appears more than once in a record as a server OCCURS
segment. You can implement relationships between
MODEL 204 files with the JOIN command or by describing
the relationships in Master and Access Files.

The adapter provides read-only access to existing MODEL
204 data files; it cannot update the files. As a result, server
features that perform write operations are not supported.
The adapter uses only non-exclusive retrieval rights and
standard MODEL 204 read-only calls; it never jeopardizes
the integrity of MODEL 204 files.
iWay Data Adapter Administration for MVS and VM 10-1

Overview
Overview
The adapter also supports certain MODEL 204 security features and complements existing
MODEL 204 security. The Server DBA security features permit controlled data access at the
user, file, field, or field-value levels.

When you issue a server retrieval request, the adapter translates it into an equivalent set of
MODEL 204 HLI (Host Language Interface) calls, such as IFFIND, IFGET, IFMORE, and IFCTO
(the language required by the MODEL 204 DBMS). The data returned by the MODEL 204
DBMS in response is then passed to the client application. The following diagram depicts
report processing:

The adapter automatically optimizes HLI calls based on request criteria. Thus, the two
primary tasks the adapter performs are:

• Issuing retrieval instructions to obtain data from MODEL 204 files.

• Establishing retrieval procedures that make efficient use of the available retrieval
techniques.

Just as important, the adapter initiates and monitors communication between itself and
the MODEL 204 DBMS, and provides descriptive error messages when necessary.

SQL
SELECT LAST_NAME FROM EMPLOYEE ORDER BY DEPT_CODE;
END

Server

MODEL 204
Adapter

Database

Database

MODEL 204
DBMS

Database
10-2 iWay Software

Getting Started in MODEL 204
The server and the MODEL 204 DBMS interact as follows:

1. Given a report request, the adapter builds HLI calls that define the request in terms that
the MODEL 204 DBMS can understand.

2. Having received these calls from the adapter, the MODEL 204 DBMS retrieves data
targeted by the request and builds an answer set.

3. The MODEL 204 DBMS sends records from the answer set one at a time and/or a return
code back to the adapter, which in turn passes it to the server for further processing.

Environment
The adapter operates in conjunction with the server to access the MODEL 204 DBMS under
the MVS or OS/390 operating system (Middleware Server and M204 DBMS).

The adapter is compatible with MODEL 204 Version 2.2.0 and subsequent versions, except
where noted. In addition to MODEL 204 files, the server implements joins with the
appropriate adapter for many other external file types (for example, DB2, Oracle, DL/I, and
CA-IDMS/DB).

Ease of Use
With the adapter installed, use SQL to request access to MODEL 204 files (either as
individual files or as groups). There is no need for specialized subroutines or embedded
commands.

To make a MODEL 204 file intelligible to the server, describe each file or group once in
server terminology. This description is stored as a Master File and an associated Access File.
This enables you to refer to the individual fields of the MODEL 204 file using the server field
name or the MODEL 204 field name.

Master and Access Files are sometimes created by your database administrator (DBA) or
application developers, and may already be available at your site.

Efficiency
When you issue a server report request, the adapter analyzes the conditions in the request
and sets up retrieval procedures to efficiently locate and retrieve the data records that fulfill
the request requirements. Depending on the conditions in the request, the adapter
automatically generates optimized MODEL 204 HLI calls.

The adapter retrieves from the MODEL 204 DBMS only those records or fields referenced in
the report request. Additionally, the adapter may require the MODEL 204 DBMS to perform
all of the work involved in the joining, sorting, and aggregation of data, freeing the server
from these tasks. This reduction in the volume of DBMS-to-server communication results in
faster responses for users.
iWay Data Adapter Administration for MVS and VM 10-3

Security
Security
All operating system security features or restrictions in effect apply to the adapter.

The server respects all existing MODEL 204 security. This means that an adapter user must
be defined to the MODEL 204 DBMS as authorized to retrieve data. This authorization must
come from the MODEL 204 database administrator (DBA).

The adapter also supports such MODEL 204 security features as account name, account
password, and file passwords. You specify these security features in each Access File.
Additionally, you can change the account name and password by issuing adapter SET
commands.

The server also provides its own security facilities; you may use them as a complement to
MODEL 204 security. For example, you can encrypt Server Access Files that contain MODEL
204 security information. Server security can enforce the following levels of restriction:

• File-level security, to prevent access to a MODEL 204 file.

• Field-level security, to limit the fields within a MODEL 204 file that are accessible to a
user.

• Field-value security, to limit the record types within a MODEL 204 file that are accessible
to a user based on a specified field's values.

Refer to the IBM Mainframe Users Manual for information about Server DBA security.
10-4 iWay Software

Getting Started in MODEL 204
Installing the MODEL 204 Data Adapter
Before you install the adapter, please review the following software requirements:

• MODEL 204 must be installed and working. If it is not, contact your MODEL 204
database administrator. The adapter may be used with MODEL 204 version 2.2.0 and
subsequent versions.

• The server must be installed on your system. If it is not, contact your server database
administrator or consult the appropriate server installation guide for installation
instructions.

For MVS, you will need to know how to allocate the adapter libraries.

The adapter installation procedure consists of three tasks:

1. Preparing the adapter run-time libraries.

2. Linking the adapter module.

3. Meeting the adapter run-time requirements.

Linkage Editor Control Statements
Both the installation of the MODEL 204 Adapter and the application of subsequent PTF
object modules require the linkedit step. The control statements that the linkage editor
requires are distributed as member M204IN of 'prefix.EDALIB.DATA'; you must retain it on
disk for future use.
iWay Data Adapter Administration for MVS and VM 10-5

Preparing the Adapter Run-Time Libraries
Preparing the Adapter Run-Time Libraries
At this point, you may need to create or modify run-time libraries.

Many sites create private and public versions of the MASTER and ACCESS libraries to make
maintenance easier. These additional libraries should have the same DCB attributes as the
original libraries.

The MASTER Library
The MASTER library is created when the server is installed. The library is allocated to
ddname MASTER, and its members are Master Files.

The server uses a Master File to describe the data in a MODEL 204 file or group. Each file or
group accessed by the adapter must be described to the server as a Master File or as a
segment in a Master File.

Below are 'prefix.EDAMFD.DATA' members, distributed with the server product, that
describe the sample MODEL 204 files:

The ACCESS Library
The ACCESS library is allocated to ddname ACCESS or FOCM204. Access Files describe
additional characteristics of MODEL 204 files. Each Access File has a corresponding Master
File in the MASTER library.

Access Files provided by the server for the MODEL 204 sample files are:

Member Name Description

AUTO Links the MODEL 204 CLIENTS and VEHICLES files.

CLIENT Describes the MODEL 204 CLIENTS file.

DUMMY Links the MODEL 204 CLIENTS and VEHICLES files.

VEHICLE Describes the MODEL 204 VEHICLES file.

Member Name in
'prefix.EDAAFD.DATA'

Description

AUTO Links the MODEL 204 CLIENTS and VEHICLES files.

CLIENT Describes the MODEL 204 CLIENTS file.

DUMMY Links the MODEL 204 CLIENTS and VEHICLES files.

VEHICLE Describes the MODEL 204 VEHICLES file.
10-6 iWay Software

Getting Started in MODEL 204
The Adapter Load Library
The adapter load library is member M204IN of 'prefix.EDALIB.LOAD'; which is allocated to
ddname STEPLIB in the server JCL:

 //STEPLIB DDDSN=prefix.EDALIB.LOAD,DISP=SHR

Example Linking the Adapter Module

Prior to using the adapter, the M204IN module must be linked with the MODEL 204 object
module IFIF. The mod204.OBJLIB library is a MODEL 204 object library.

The following sample link-edit JCL is contained in ‘prefix.EDALIB.DATA (GENE204)’:

//LKED EXEC PGM=IEWL,PARM='LIST,NOXREF,LET'
//M204 DD DISP=SHR,DSN=mod204.OBJLIB
//SYSLMOD DD DISP=SHR,DSN=qualif.EDALIB.LOAD
//MAINTAIN DD DISP=SHR,DSN=qualif.EDALIB.DATA
//SYSUT1 DD UNIT=SYSDA,SPACE=(100,(50,50))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *
 INCLUDE M204(IFIF)
 INCLUDE SYSLMOD(M204IN)
 INCLUDE MAINTAIN(M204IN)
 NAME M204IN(R)
/*

The ERRORS Library
The ERRORS library was created when the server was installed. Member FOCM204 of
'prefix.EDAMSG.DATA' contains the text of all the error messages generated by the MODEL
204 Adapter.
iWay Data Adapter Administration for MVS and VM 10-7

Meeting the Adapter Run-Time Requirements
Meeting the Adapter Run-Time Requirements
Before you invoke the adapter, you must:

• Be assigned a valid account and password by your MODEL 204 database administrator.

• Invoke a client (or connector?) and run a simple query to test the adapter installation.

Specifying Account and File Passwords
Your MODEL 204 database administrator must provide account and file security
information in order for the server to access password protected MODEL 204 files or
groups.

An account consists of the MODEL 204 userid and password. You can specify these security
values by either including the ACCOUNT and ACCOUNTPASS attributes in the first
declaration of the Access File, or by issuing the adapter M204IN SET M204ACCNT and
M204PASS commands. Your database administrator can also provide MODEL 204 logon
and account information with a security exit subroutine.

You must also know the file name and password (if there is one) for each MODEL 204 file or
group you access. Specify these values with the FILE and PASS attributes in each SEGNAME
declaration of the Access File.

For more information, see Adapter Environmental Commands on page 10-45.

Example Testing the Adapter Installation

To verify the adapter installation, run a simple query using one of the pairs of Master and
Access Files supplied with the adapter. For example, the following RPC accesses the CLIENT
file and limits the result set to 10 rows:

TABLE FILE CLIENT
PRINT POLICY_HOLDER
IF RECORDLIMIT EQ 10
END

Reference Possible Installation Errors

Some installation errors manifest themselves at execution time. You may see:

• Spurious diagnostics and abends. This could be an indication that the linkage editor
control statements contained in 'prefix.EDALIB.DATA(M204IN)' were not used. Re-link
the adapter.

• The diagnostic message:

Error message text missing nnn

This indicates that the dataset 'prefix.EDAMSG.DATA' (and its member FOCM204) is not
allocated in the server JCL to ddname ERRORS.
10-8 iWay Software

Getting Started in MODEL 204
Mapping Concepts in MODEL 204
A MODEL 204 file can represent one file or a group of files. A single MODEL 204 file can
contain records that vary in length and format; a record can consist of fields that also vary in
length. Fields are the smallest elements or units of data. They can occur more than once per
record. A unit of records with identical sets of fields is called a logical record type. A MODEL
204 file is defined in a MODEL 204 file description.

In the sections that follow, you will notice that:

• A MODEL 204 field is equivalent to a Master File field.

• A logical record type corresponds to a Master File segment. The individual record
corresponds to a segment instance.

• MODEL 204 fields that appear more than once in a record are mapped to a Master File
OCCURS segment.

• One or more record types can be described in any order in a pair of Master and Access
Files.

• One or more MODEL 204 files can be described in a pair of Master and Access Files.
iWay Data Adapter Administration for MVS and VM 10-9

Mapping Concepts in MODEL 204
MODEL 204 Files With One Logical Record Type
A MODEL 204 file that contains records with identical sets of fields (the same logical record
type) can be represented as a single Master File segment. Each MODEL 204 field that occurs
only once becomes a server field. The ALIAS attribute in the Master File identifies the
MODEL 204 field name.

In the Master File, describe the logical record type as a segment; the segment description
can include some or all of the MODEL 204 fields in any order. The corresponding Access File
identifies the record type's MODEL 204 file or group name and its password; the Access File
can also include FIELD declarations that specify a TYPE attribute to indicate the appropriate
suffix operators for MODEL 204 key fields. Master File field suffix operators (KEY, for
example) identify different types of MODEL 204 key fields. For a complete list of suffix
operators, see Types of Key Fields on page 10-35.

Note: A MODEL 204 field that can occur more than once should be represented as a
separate OCCURS segment.

1. Is one MODEL 204 file with one logical record type.

2. Is the equivalent Master File segment. The field VVIN represents the MODEL 204 field
VIN.

VVIN
Field2

VEHICLE
Segment

2) Server1) MODEL 204

VEHICLES
Record Type

Record 1 VIN Field2

Record 2

Record 3

Record 4
10-10 iWay Software

Getting Started in MODEL 204
MODEL 204 Files With Multiple Logical Record Types
If a MODEL 204 file contains multiple logical record types, each logical record type
corresponds to one segment. You can represent a MODEL 204 file:

• As a multi-segment Master File structure with a hierarchical retrieval path. The
segments are cross-referenced by embedded joins that are defined by parent/
dependent relationships.

• As several individual segments, each described in a separate pair of Master and Access
Files.

In a multi-segment Master File, you can include segment descriptions for all of the logical
record types or only those you need for your reports. To identify the parent of a dependent
segment, specify the PARENT attribute in the segment declaration of the dependent
segment.

In the corresponding Access File, for each logical record type you must specify:

• The MODEL 204 file and password.

• The MODEL 204 record type field and the unique value that identifies it.

• The shared field that implements the join relationship.

• MODEL 204 key fields (TYPE attributes in FIELD declarations identify the appropriate
suffix operators).

Note: Record type fields identify individual record types that reside in the same MODEL 204
file. MODEL 204 files that consist of one logical record type do not require record type
fields. In the Access File, the RECTYPE and RECTVAL attributes specify record type fields and
their values.
iWay Data Adapter Administration for MVS and VM 10-11

Mapping Concepts in MODEL 204
MODEL 204 Files With Multiply-Occurring Fields
In MODEL 204 files, some fields may appear more than once per record. Represent each
multiply occurring field separately from the non-repeating fields as a Master File OCCURS
segment. In this case, the Master File contains a parent segment to describe all the non-
repeating fields, and a separate dependent OCCURS segment for each multiply occurring
field.

When you create a Master File, describe the OCCURS segment only if you need the multiply
occurring field for your reports; you are not required to describe every multiply occurring
field. Do not describe the OCCURS segment in the corresponding Access File unless its size
exceeds the buffer capacity.

Example Identifying Multiply-Occurring Fields

The following diagram illustrates one multiply occurring field and its equivalent OCCURS
segment:

1. Is the MODEL 204 VEHICLES file with one logical record type and one multiply
occurring field, called OTHER DRIVER, which identifies drivers besides the principal
driver.

2. Is the equivalent multi-segment structure. The parent (or root, in this case) is the
VEHICLE segment; it contains all of the non-repeating fields. The dependent segment is
the OCCURS segment that contains iterations of the MODEL 204 OTHER DRIVER field. In
the Master File, the segment declaration for the dependent segment must include the
OCCURS attribute.

VEHICLE Master File Description

2) Server1) MODEL 204

VEHICLES File

VIN
OTHER DRIVER
OTHER DRIVER
OTHER DRIVER
OTHER DRIVER

.

.

VEHICLE Segment

OCCURS Segment

OCCURS=VARIABLEOTHER_DRIVERS

VVIN
10-12 iWay Software

Getting Started in MODEL 204
Mapping MODEL 204 and Server Relationships
In MODEL 204, interfile relationships are not coded in the MODEL 204 file description. This
provides a certain degree of flexibility because the MODEL 204 files can be cross-referenced
dynamically. On the other hand, the burden of connecting the MODEL 204 files falls on the
user.

MODEL 204 relationships between logical record types are cross-referenced using shared
key fields. The adapter supports this implementation. You can logically join MODEL 204 files
using the adapter with either of the following techniques:

• Issue JOIN commands to dynamically join the MODEL 204 files.

• Create a multi-segment Master File structure and describe the join relationships in a
pair of Master and Access Files. (This multi-segment structure is also called an
embedded join or server view.)
iWay Data Adapter Administration for MVS and VM 10-13

Mapping MODEL 204 and Server Relationships
Dynamic Joins
If there is a shared or common field, you can use the JOIN command to dynamically join:

• Separate physical MODEL 204 files that each contain one logical record type. These
MODEL 204 files are usually described as single segment Master Files.

• Logical record types that are described to the server as single segment Master Files, but
that originate from the same MODEL 204 file.

• Multi-segment server structures that represent several MODEL 204 files and/or
different record types from the same MODEL 204 file. Multi-segment Master Files are
explained in Embedded Joins on page 16.

The following diagram illustrates a MODEL 204 join and its equivalent server join:

1. Are two MODEL 204 files, VEHICLES and CLIENTS. Each file contains one logical record
type for this example. The common or key field is VIN.

2. Are two equivalent server segments. Each segment is described in a separate pair of
Master and Access Files. The field names for the common field are
VEHICLE_IDENTIFICATION_NUMBER and VVIN. The MODEL 204 key fields are specified
with the TYPE=KEY attribute in the Access File.

JOIN VEHICLE_IDENTIFICATION_NUMBER
IN CLIENT TO ALL VVIN IN VEHICLE AS J1
END

2) Server1) MODEL 204

VEHICLES File

VIN

CLIENT Master File Description

VEHICLE_IDENTIFICATION_NUMBER
VIN

CLIENTS File

S1

VEHICLE Master File Description

VVIN K
10-14 iWay Software

Getting Started in MODEL 204
The JOIN command includes the names of the Master Files and the common field names. To
retrieve data from the joined structure, issue a report request that specifies the host (or
parent) Master File from the JOIN command.

Note: Since in this example each MODEL 204 file consists of one logical record type, record
type fields are not specified in the Access Files.

The following diagram illustrates a MODEL 204 file with two record types and the server
join:

1. Is the MODEL 204 CLIENTS file; it contains two logical record types. The common or key
field is POLICY NO. The RECTYPE field contains the value POLICYHOLDER for the
HOLDER record type and the value DRIVER for the DRIVER record type.

2. Are two equivalent server segments. Each segment is described in a separate pair of
Master and Access Files. The field names for the common field are POLICY_NUMBER
and DRIVER_POLICY_NUMBER. The MODEL 204 key fields are specified with the
TYPE=KEY attribute in the Access File. Since both record types reside in the same
MODEL 204 file, each Access File segment declaration also includes RECTYPE (record
type) and RECTVAL (record type value) attributes.

The JOIN command includes the names of the Master Files and the common field names. To
retrieve data from the joined structure, issue a report request that specifies the host (or
parent) Master File from the JOIN command.

JOIN POLICY_NUMBER IN HOLDER TO ALL
DRIVER_POLICY_NUMBER IN DRIVER AS J2
END

2) Server1) MODEL 204

CLIENTS File

POLICY NO
RECTYPE

HOLDER Master File Description

POLICY_NUMBER
RECTYPEH

S1

DRIVER Master File Description

DRIVER-POLICY_NUMBER
RECTYPED

K

In Access File:
RECTYPE=RECTYPED
RECTVAL=DRIVER

In Access File:
RECTYPE=RECTYPEH
RECTVAL=POLICYHOLDER
iWay Data Adapter Administration for MVS and VM 10-15

Mapping MODEL 204 and Server Relationships
Embedded Joins
You can also implement join relationships by describing a multi-segment server structure in
a single pair of Master and Access Files. If there is a shared or common field, you can create
an embedded join for:

• Separate physical MODEL 204 files that each contain one logical record type. The
MODEL 204 files are described as segments in the multi-segment structure.

• Logical record types that originate from the same MODEL 204 file. These record types
are described as segments in the multi-segment structure. In the Access File, the
RECTYPE and RECTVAL attributes in each segment record identify the record type field
and its corresponding value.

• Other multi-segment server structures. A Master File might relate two hierarchical
structures as one.

Embedded joins offer two advantages:

• They create a logical server view of the record types. The view may also provide a
measure of security by limiting access to segments or fields.

• Users do not have to issue an explicit JOIN command.

When you create a Master File, describe the MODEL 204 logical record types or files as a
hierarchy. Start first by choosing a record type or file to be the root segment. The root
segment contains dependent segments that, in turn, may have dependent segments. The
dependent segments identify their superiors (or parents) with the PARENT attribute. Any
record type can act as a dependent provided that its shared field is a key field. (Types of
MODEL 204 key fields and corresponding field suffix operators are explained in Types of
Key Fields on page 35.)

In the associated Access File, for each pair of related segments, specify the shared field from
the parent and dependent segments with the KEYFLD and IXFLD attributes. The adapter
implements the relationship by matching values at run time.

The embedded join is executed automatically when you issue a report request that
references fields from two related segments. You do not specify the shared field in your
report request; the selection of the shared field is transparent.

Note: It is possible to join unrelated MODEL 204 files and record types that do not have
common fields by describing a DUMMY segment. For information about this virtual root,
see Joining Unrelated MODEL 204 Files on page 10-19.
10-16 iWay Software

Getting Started in MODEL 204
The following diagram illustrates an embedded join for two MODEL 204 files:

1. Are two MODEL 204 files, VEHICLES and CLIENTS. Each file contains one logical record
type for this example. Since they exist as physically separate files, they do not contain a
MODEL 204 record type field. The common or key field is VIN.

2. re two equivalent server segments described in one pair of Master and Access Files. The
field names for the common field are VEHICLE_IDENTIFICATION_NUMBER and VVIN.
The MODEL 204 key fields are specified with the TYPE=KEY attribute in the Access File.

AUTO Master File Description
HOLDER Segment

2) Server1) MODEL 204

VEHICLES File

VIN VEHICLE_IDENTIFICATION_NUMBERVIN

CLIENTS File

VEHICLE Segment

VVIN
In Access File:
KEYFLD=
VEHICLE_IDENTIFICATION_NUMBER
IXFLD=WIN
iWay Data Adapter Administration for MVS and VM 10-17

Mapping MODEL 204 and Server Relationships
To create a parent/dependent relationship, describe the HOLDER segment as the parent (or
root) and the VEHICLE segment as the dependent in the Master File. Include the
PARENT=HOLDER attribute in the segment declaration for VEHICLE. In the Access File,
specify the KEYFLD and IXFLD attributes to create the embedded join.

The following diagram illustrates an embedded join for a MODEL 204 file with two record
types:

1. Is the MODEL 204 CLIENTS file; it contains two logical record types. The common or key
field is POLICY NO. The RECTYPE field contains the value POLICYHOLDER for the
HOLDER record type and the value DRIVER for the DRIVER record type.

2. Are two equivalent server segments described in one pair of Master and Access Files.
The field names for the common field are POLICY_NUMBER and
DRIVER_POLICY_NUMBER. The MODEL 204 key fields are specified with the TYPE=KEY
attribute in the Access File. Since both record types reside in the same MODEL 204 file,
the Access File segment declarations also include the RECTYPE (record type) and
RECTVAL (record type value) attributes.

To create a parent/dependent relationship, describe the HOLDER segment as the parent (or
root) and the DRIVER segment as the dependent in the Master File. Include the
PARENT=HOLDER attribute in the segment declaration for DRIVER. In the Access File, specify
the KEYFLD and IXFLD attributes in the DRIVER segment declaration to create the
embedded join.

CLIENT Master File Description

2) Server1) MODEL 204

CLIENTS File

POLICY NO
RECTYPE

HOLDER Segment

DRIVER Segment

In Access File:
RECTYPE=RECTYPED
RECTVAL=DRIVER
KEYFLD=POLICY_NUMBER
IXFLD=DRIVER_POLICY_NUMBER

DRIVER_POLICY_NUMBER
RECTYPED

POLICY_NUMBER
RECTYPEH

In Access File:
RECTYPE=RECTYPEH
RECTVAL=POLICYHOLDER
10-18 iWay Software

Getting Started in MODEL 204
Joining Unrelated MODEL 204 Files
You can describe unrelated MODEL 204 files or logical record types as embedded joins even
if a shared field does not exist. To do so, describe a special dummy segment
(SEGNAME=DUMMY) as the root in the Master File. Then, specify the unrelated segments as
parallel dependents of the dummy root. Since the dummy segment is a virtual segment, do
not describe fields for it in the Master File, and do not include a corresponding segment
declaration for it in the Access File.

If your report request includes fields from two or more segments, the server makes only
one retrieval pass over the answer set returned by the MODEL 204 DBMS. Fields specified
for sort phrases (BY and ACROSS) and screening tests (IF and WHERE) must lie on the same
retrieval path as the other requested fields. You cannot use a field from one unrelated
segment to sort the data in other segments.

The following diagram illustrates two MODEL 204 files: CLIENTS and VEHICLES. These two
files are joined by a dummy segment:

1. Are two MODEL 204 files, the CLIENTS file and the VEHICLES file. The record type field in
the DRIVER segment identifies all client records that have the value 'DRIVER'. A dummy
segment is needed because there is no shared field to cross-reference or join these
files.

2. Is an equivalent multi-segment server structure. The root is a DUMMY segment. The
two dependents are related to the root; they are not related to each other because a
common field does not exist.

DUMMY Master File Description

2) Server1) MODEL 204

CLIENTS File

POLICY NO
RECTYPE

VEHICLE SegmentDRIVER Segment

In Access File:
RECTYPE=RECTYPED
RECTVAL=DRIVER

VEHICLES File

VIN
VVINDRIVER_POLICY_NUMBER

RECTYPED
iWay Data Adapter Administration for MVS and VM 10-19

MODEL 204 Master Files
To create a Master File for this structure, specify the segment declaration for the dummy
segment (SEGNAME=DUMMY) first, so it functions as the root. Do not describe fields for it.
Then, describe the dependent segments, and include the PARENT=DUMMY attribute to
identify the dummy segment as their parent. In the associated Access File, do not specify a
segment declaration for the dummy segment; include segment declarations only for the
dependent segments. The record type field is required in the DRIVER segment since the
DRIVER segment comes from a MODEL 204 file, CLIENTS, that contains two logical record
types. Do not specify KEYFLDIXFLD values.

For a summary of general rules for describing MODEL 204 files, see Summary of Mapping
Rules on page 10-37.

MODEL 204 Master Files
A MODEL 204 file consists of records and fields. It can represent one file or a collection of
files called a group. If records have identical sets of fields, the unit of records is called a
logical record type. A logical record type is described as a single segment in the Master File.

A Master File consists of file, segment, and field declarations. Rules for declarations are:

• Each declaration must begin on a separate line and be terminated by a comma and
dollar sign (,$). Text appearing after the comma and dollar sign is treated as a comment.

• A declaration can span as many lines as necessary as long as no attribute=value pair is
separated. Commas separate attribute=value pairs.

• Certain attributes are required; the rest are optional.

The following sections summarize the syntax for each type of declaration and then present
detailed explanations for each attribute.

File Attributes
Each Master File begins with a file declaration that names the file and describes the type of
data source; in this case, a MODEL 204 file or group. The file declaration has two attributes,
FILENAME and SUFFIX.

Syntax How to Describe the Data Source Type Using File Attributes

FILE[NAME]=name, SUFFIX=M204IN [,$]

where:

name

Is a one to eight character name that complies with server file naming conventions.

M204IN

Is the SUFFIX value that specifies the MODEL 204 Adapter.
10-20 iWay Software

Getting Started in MODEL 204
Reference FILENAME

The FILENAME (or FILE) attribute is required. It can be any name that complies with server
file naming conventions. For MVS, it is usually the same as the member name in the PDS
allocated to ddname MASTER.

The Master File name may be up to eight alphanumeric characters long and must contain at
least one letter. It should be representative of the MODEL 204 file or group contents. It can
have the same name as the MODEL 204 file if the name complies with server naming
conventions.

Reference SUFFIX

The SUFFIX attribute value, M204IN, indicates that the MODEL 204 Adapter is required for
interpreting requests.

Segment Attributes
Each logical record type described in a Master File requires a segment declaration that
consists of at least two attributes, SEGNAME and SEGTYPE.

Syntax How to Describe Segments Using Segment Attributes

SEGNAME= name|DUMMY , SEGTYPE= S|U [, PARENT=parent] ,$

where:

name

Is a one to eight character name that identifies the segment. The value DUMMY creates
a virtual segment used for joining unrelated segments.

S|U

Indicates to the adapter that the MODEL 204 DBMS handles the storage order of the
data. The default setting is S.

parent

For multi-segment structures (embedded joins) only, is the SEGNAME value for the
parent record type. This attribute is required in segment declarations that describe
dependent segments.

Note:

• Segment declarations for OCCURS segments are explained in OCCURS Attributes

• Remote files and segments that require the CRFILE attribute and SEGTYPE values of KU,
KL, KLU, and KM are explained in the IBM Mainframe Users Manual.
iWay Data Adapter Administration for MVS and VM 10-21

MODEL 204 Master Files
Reference SEGNAME

The SEGNAME (or SEGMENT) attribute identifies each MODEL 204 logical record type. The
SEGNAME value can be a maximum of eight alphanumeric characters. It may be the name
of the record type or an arbitrary name and must be unique within a Master File.

The SEGNAME value from the Master File is also specified in the Access File where the
segment declaration identifies the name of the MODEL 204 file. In this manner, the
SEGNAME value serves as a link to the actual MODEL 204 file name.

Reference SEGTYPE

In a single segment Master File, the SEGTYPE value is S. The MODEL 204 DBMS handles the
storage order of the data.

In a multi-segment Master File, SEGTYPE values for dependent segment declarations can be
S or U (for unique).

• SEGTYPE=S indicates that the dependent record type has a one-to-many or many-to-
many relationship with the record type named as its parent. For every record of the
parent record type, there may be more than one record in the dependent record type.

• SEGTYPE=U indicates that the dependent record type has a one-to-one or a many-to-
one relationship with the record type named as its parent. For every record of the
parent record type, there may be (at most) one record in the dependent record type.
For a one-to-one relationship to exist, both record types must share a common key. For
a many-to-one relationship to exist, the common key of the dependent record type
must be a subset of the common key of the parent record type.

If the SEGTYPE attribute is omitted from any segment record in the Master File, its value
defaults to S.

Reference PARENT

The PARENT attribute is required in dependent segment declarations. Its value is the
SEGNAME value of the dependent record type's parent (the logical record type to which it
will be related at run time).

Field Attributes
Each record in a logical record type consists of one or more fields. These MODEL 204 fields
are described in the Master File with the primary attributes FIELDNAME, ALIAS, USAGE, and
ACTUAL. You are only required to describe MODEL 204 fields you use in reports, and you
can specify them in any order within each segment. Additional attributes are explained in
the IBM Mainframe Users Manual.
10-22 iWay Software

Getting Started in MODEL 204
Syntax How to Describe Fields Using Field Attributes

FIELD[NAME]=field, [ALIAS=] [m204field],
 [USAGE=] display, [ACTUAL=] An ,$

where:

field

Is a 1 to 66 character field name. In requests, the field name can be qualified with the
Master File and/or segment name; although the qualifiers and qualification characters
do not appear in the Master File, they count toward the 66 character maximum.

m204field

Is the MODEL 204 field name, up to 66 characters (or, optionally, blank if the field name
exceeds 66 characters and is described in the Access File).

display

Is the server display format for the field.

An

Is the server definition of the MODEL 204 field format and length (n).

You can omit the ALIAS, USAGE, and ACTUAL keywords from the field declaration if the
values are specified in the standard order (FIELD, ALIAS, USAGE, ACTUAL). For example, the
following declarations are equivalent:

FIELD = YEAR, ALIAS=YEAR, USAGE=A2, ACTUAL=A2,$
FIELD = YEAR, YEAR, A2, A2,$

Reference FIELDNAME

Field names must be unique within the Master File and may consist of up to 66
alphanumeric characters. MODEL 204 field names are acceptable values if they meet the
following naming conventions:

• Names can consist of letters, digits, and underscore characters. Special characters and
embedded blanks are not advised.

• The name must contain at least one letter.

Since the field name appears as the default column title for reports, select a name that is
representative of the data. You can specify field names, aliases, or a unique truncation of
either in requests.
iWay Data Adapter Administration for MVS and VM 10-23

MODEL 204 Master Files
Duplicate field names (the same field names and aliases) within a segment are not
permitted. Requests can qualify duplicate field names from different segments with the
name of the Master File and/or segment. For more information about field qualifiers, see
the IBM Mainframe Users Manual.

• The maximum length for field names and aliases is 66 characters.

• The maximum of 66 characters includes the name of the field or alias from the Master
File, plus eight-character maximums for field qualifiers (Master File name and segment
name) when used to reference the field in requests, a three-character maximum for a
suffix operator, and delimiting characters (periods).

• Master Files created in older Releases may contain field declarations with suffix
operators for MODEL 204 key fields. While this earlier method is supported, the
recommended method is to specify the suffix operator in the Access File.

• Field names specified in OCCURS segments may not be qualified.

Reference ALIAS

The ALIAS value for each field must be the full MODEL 204 fieldname; the adapter uses it to
generate HLI calls. The ALIAS name must be unique within the segment. If the name is
longer than the 66 character maximum, leave the ALIAS attribute blank in the Master File
and specify the alias in the Access File instead (see MODEL 204 Access Files on page27). The
ALIAS name must comply with the field naming conventions listed previously. If the MODEL
204 field name contains an embedded blank, enclose the name in single quotation marks.

Aliases may be duplicated within the Master File if they are defined for different MODEL 204
logical record types; however, their corresponding field names must be unique. For
example, the ALIAS values for two MODEL 204 record type fields may be RECTYPE, but the
field names must be unique.

Note: Do not use RECTYPE as a field name.

Reference USAGE

The USAGE attribute indicates the display format of the field. An acceptable value must
include the field type and length and may contain edit options. The server uses the USAGE
format for data display on reports. All standard USAGE formats (A, D, F, I, P) are available. For
additional information about USAGE formats for external files, see the IBM Mainframe Users
Manual.
10-24 iWay Software

Getting Started in MODEL 204
Reference ACTUAL

The ACTUAL attribute indicates the server representation of MODEL 204 field formats as
returned by the MODEL 204 DBMS in the data buffer. Specify an alphanumeric format (A)
with a length (n) equal to the maximum length for the MODEL 204 field. If the ACTUAL
length is less than the maximum length for the MODEL 204 field, field values will be
truncated.

Note: Since MODEL 204 file descriptions do not define field lengths, ask your MODEL 204
database administrator or consult other sources, such as data dictionaries, for field
information.

OCCURS Attributes
Describe each multiply occurring field that exists in a MODEL 204 record as an OCCURS
segment. The segment declaration for an OCCURS segment consists of the SEGNAME,
PARENT, and OCCURS attributes. It contains one field declaration to represent the multiply
occurring field, and, optionally, a field declaration for an internal counter, the ORDER field.
Each OCCURS segment is described as a dependent segment; its parent segment describes
all non-repeating fields from the logical record type. You do not have to describe an
OCCURS segment if you do not plan to use the multiply occurring field in report requests.

Syntax How to Describe Multiply Occurring Fields as OCCURS Segments

SEGNAME=segname, PARENT=parname, OCCURS=VARIABLE,$

where:

segname

Is the one to eight character name of the OCCURS segment.

parname

Is the SEGNAME value of the parent segment that contains the non-repeating fields
from the logical record type.

VARIABLE

Indicates that the number of occurrences varies.

Note:

• The SEGTYPE attribute is always S for OCCURS segments and, therefore, can be omitted.

• OCCURS segments generally do not require corresponding segment declarations in the
Access File. An exception is for processing OCCURS segments that exceed the buffer
capacity (see Segment Declarations on page 29).

• Field names in OCCURS segments may not be qualified with Master File or segment
names, but the TYPE attribute can define suffix operators in the Access File.
iWay Data Adapter Administration for MVS and VM 10-25

MODEL 204 Master Files
The ORDER Field: Tracking Sequence Within Multiply Occurring Fields
The ORDER field is an optional counter that you can define to identify the sequence
number of each multiply occurring field when the order of data is significant. You can use
its value in subsequent report requests. The ORDER field does not represent an existing
MODEL 204 field; it is used only for internal processing. The ORDER field must be the last
field described in the OCCURS segment.

Syntax How to Track Field Sequence with the ORDER Field

FIELD=name, ALIAS=ORDER, USAGE=In, ACTUAL=I4,$

where:

name

Is any meaningful name. ALIAS must be ORDER. USAGE is an integer (In) format.
ACTUAL must be I4.

The following annotated example illustrates an OCCURS segment in the VEHICLE Master
File.

3. SEGNAME=VEHICLE,$
 FIELD=VVIN ,ALIAS=VIN ,A10 ,A10 ,$
 FIELD=YEAR ,ALIAS=YEAR ,A2 ,A2 ,$
 FIELD=MAKE ,ALIAS=MAKE ,A16 ,A16 ,$

1. SEGNAME=XOTHDR, PARENT=VEHICLE, OCCURS=VARIABLE,$
2. FIELD=OTHER_DRIVERS ,ALIAS='OTHER DRIVER' ,A6 ,A6 ,$
4. FIELD=DRVCNT ,ALIAS=ORDER ,I4 ,I4 ,$

Notice that:

1. Is the OCCURS segment declaration. Its parent segment is VEHICLE.

2. Is the field declaration for the multiply occurring field. Field qualifiers (Master File and
segment names) are not permitted, but the TYPE attribute can define a suffix operator
in the Access File.

3. Is the segment declaration for the parent segment.

4. Is the field declaration for the ORDER field. As an internal counter field, it does not
correspond to a MODEL 204 field.
10-26 iWay Software

Getting Started in MODEL 204
MODEL 204 Access Files
Each Master File for a MODEL 204 file must have a corresponding Access File. The name of
the Access File (MVS PDS member name) must be the same as that of the Master File. For
MVS, the Access File PDS is allocated to ddname FOCM204. The Access File associates a
segment in the Master File with the MODEL 204 logical record type it describes.

The Access File consists of account, segment, and field declarations. The Access File
minimally identifies account and segment information and field suffix operators. It can also
contain field declarations for aliases that exceed 66 characters.

In multi-segment structures, the Access File must contain a segment declaration for each
logical record type described in the Master File. Segment information may include
embedded joins and MODEL 204 record type fields. The order of segment declarations in
the Access File must correspond to their order in the Master File.

The Access File consists of 80 character declarations in comma-delimited format. Rules for
declarations are:

• You can number the declarations in columns 73 - 80 (this is optional).

• Each declaration must begin on a separate line and be terminated by a comma and
dollar sign (,$).

• A declaration can span as many lines as necessary as long as no attribute=value pair is
separated. Commas separate attribute=value pairs.

• Blank lines and leading or trailing blanks around attribute=value pairs are ignored.

• Declarations starting with an asterisk (*) in Column 1 are treated as comments.

• Values that contain commas, equal signs, dollar signs, or embedded blanks must be
enclosed in single quotation marks.

For example, the VEHICLE Access File contains one segment declaration because the
VEHICLE Master File contains only one logical record type.

The following sections summarize the syntax for each type of declaration and provide
detailed explanations for each attribute.
iWay Data Adapter Administration for MVS and VM 10-27

MODEL 204 Access Files
Account Declaration
The account declaration indicates authorization to access MODEL 204 files. At most one
account declaration is required; if included, it must be the first declaration in the Access File.

Syntax How to Authorize Account Access in the Access File

ACCOUNT=m204id, ACCOUNTPASS=password, IFAMCHNL= {channel |IFAMPROD },$

where:

m204id

Is the 1 to 16 character name for the MODEL 204 account (userid).

password

Is the 1 to 16 character password for the account.

channel

Is the one to eight character site-specific CRAM channel name. The default is IFAMPROD
for MVS.

Reference ACCOUNT and ACCOUNTPASS Attributes

The ACCOUNT and ACCOUNTPASS attributes describe MODEL 204 accounts (userids) and
passwords; they protect MODEL 204 files from unauthorized access. The account must have
authorization to read the MODEL 204 file or group. Acceptable values are 1 to 16 character
values.

You can omit the ACCOUNT and ACCOUNTPASS attributes from the declaration if you
specify the values with the adapter M204IN SET M204ACCNT and M204PASS commands.
These SET commands also enable you to change ACCOUNT and ACCOUNTPASS values
during the session.

You can also supply ACCOUNT and ACCOUNTPASS values using a Dialogue Manager local
variable.

For more information about security, see Security on page 10-4.

Reference IFAMCHNL Attribute

The IFAMCHNL attribute describes the CRAM channel name for MVS. For MVS, you must
specify the CRAM channel if more than one ONLINE or IFAM2 job is running or if the CRAM
channel name is not IFAMPROD. For the channel name used at your site, check with your
MODEL 204 database administrator or the IFAM2 system support staff.

The account declaration in the Access File can consist of only the IFAMCHNL
attribute=value pair if the account and password values are set with the adapter M204IN
SET M204ACCNT and M204PASS commands.
10-28 iWay Software

Getting Started in MODEL 204
Segment Declarations
The segment declaration in the Access File establishes the link between the Master File and
the MODEL 204 file or group. Attributes that constitute the segment declaration are:
SEGNAME, FILE, PASS, KEYFLD, IXFLD, RECTYPE, RECTVAL, and ACCESS. Values for SEGNAME,
FILE and PASS are required; the rest apply to multi-segment structures. The ACCESS
attribute applies to OCCURS segments.

Syntax How to Link Files Using Segment Declarations

SEGNAME=name, FILE=m204file, PASS=password
[,KEYFLD=pfield] [,IXFLD=cfield] [,RECTYPE=rtfield] [,RECTVAL=rtvalue]
,ACCESS = {OPT2/ALL/
 {OPT2/nnnn[/xxx] ,$
 {OPT2/AUTO[/xxx]

where:

name

Is the SEGNAME value from in the Master File.

m204file

Is the one to eight character name for the MODEL 204 file.

password

Is the one to eight character read password for the MODEL 204 file. The value can be
blank if a password does not exist.

pfield

Is the field name of the common field from the parent segment, and is used to
implement the join relationship. It is required in dependent segment declarations for
multi-segment structures.

cfield

Is the field name of the common field from the dependent segment, and is used to
implement the join relationship. It is required in dependent segment declarations for
multi-segment structures.

rtfield

Is the field name for the MODEL 204 record type field that exists when a MODEL 204 file
has several logical record types.

rtvalue

Is the value that identifies the MODEL 204 record type or a field name.
iWay Data Adapter Administration for MVS and VM 10-29

MODEL 204 Access Files
ALL
nnnn/xxx
AUTO/xxx

Indicates how OCCURS segments should be processed when all occurrences cannot fit
into the buffer concurrently and a (FOC4883) IFMORE FAILED error condition results.
The options are described in _ACCESS_ later in this section.

Note:

• For multi-segment structures, the order of the Access File segment declarations must
correspond to the order in the Master File.

• Dummy segments used to link unrelated segments do not have corresponding
segment declarations in the Access File.

Reference SEGNAME Value

The SEGNAME value must be the first attribute in each Access File segment declaration; it
must be identical to the SEGNAME value in the Master File.

Reference FILE and PASS Attributes

The FILE and PASS attributes are required in each Access File segment declaration; they
describe MODEL 204 file security information.

The value for the FILE attribute is the name of the MODEL 204 file or group that contains the
logical record type. The value for the PASS attribute is either the read password associated
with the MODEL 204 file or blank if the password does not exist. For both attributes,
acceptable values are one to eight character values.

Access Files can be encrypted to prevent access to this security information.

Reference KEYFLD and IXFLD Attributes

The KEYFLD and IXFLD attributes identify the common fields for parent/dependent
relationships in a multi-segment Master File. These relationships are referred to as
embedded joins, server views, or cross-references.

For each dependent segment, the KEYFLD and IXFLD attributes identify the field names of
the common or shared field that implements the embedded join. The parent field supplies
the value for cross-referencing; the dependent field contains the corresponding value. The
adapter implements the relationship by matching values at run time.

The value for the KEYFLD attribute is a 1 to 66 character field or alias name from the parent
segment. The value for the IXFLD attribute is a 1 to 66 character field or alias name from the
dependent segment.
10-30 iWay Software

Getting Started in MODEL 204
Note:

• Include the pair of attributes in Access File segment declarations for dependent
segments. Do not specify them in the segment declaration for the root segment.

• Do not specify KEYFLD and IXFLD attributes for dependent segments of a virtual parent
segment (PARENT=DUMMY).

A join can be based on more than one field in the host and cross-referenced logical record
types. If the MODEL 204 file uses multiple fields to establish a relationship or link between
logical record types, you can specify concatenated fields in an embedded join. (You can
also specify multiple fields with the dynamic JOIN command.)

In a multi-field embedded join, the KEYFLD and IXFLD values consist of a list of their
component fields separated by slashes (/). Additional Access File attributes are not
required.

Syntax How to Identify Common Fields in Embedded Joins

KEYFLD = field1/field2/....
IXFLD = cfield1/cfield2/

where:

fieldl/

Is a composite of up to 16 key fields from the parent segment. Slashes are required.

cfieldl/

Is a composite of up to 16 key fields in the dependent segment.

The adapter compares each field pair for comparable data formats prior to format
conversion; it evaluates each field pair with the following rules:

• Any of the MODEL 204 key fields listed in Field Declarations on page 34 can be used to
create an embedded join.

• Parent and dependent fields must be real fields.

• All participating fields for either the parent or dependent file must reside in the same
segment.

• KEYFLD and IXFLD attributes must specify the same number of fields. If the format of
the parent field is longer than the format of the dependent field, its values are
truncated. If the format of the parent field is shorter, its values are padded with zeros or
blanks.

• The KEYFLD and IXFLD attributes can consist of a maximum of 16 concatenated fields
in high to low significance order. You must specify the field order; the order determines
how the values will be matched.
iWay Data Adapter Administration for MVS and VM 10-31

MODEL 204 Access Files
• Each pair of fields in the KEYFLD/IXFLD attribute must have comparable data formats.
The formats of the parent fields must be compatible with the formats of the dependent
fields as specified in the MODEL 204 file description.

To implement joins, the MODEL 204 DBMS converts the alphanumeric server field formats
to equivalent MODEL 204 field formats in order to perform the necessary search and match
operations. When the MODEL 204 DBMS returns the answer set of matched values, it also
converts the values back to alphanumeric formats.

Internally, each KEYFLD value is passed to the MODEL 204 DBMS in the IFFIND call to
retrieve all matching records (segment instances) for the dependent segment.

Reference RECTYPE and RECTVAL Attributes

The RECTYPE and RECTVAL attributes identify the MODEL 204 record type field and its
corresponding value. A MODEL 204 record type field exists in a MODEL 204 file description
when the file has more than one logical record type. If the MODEL 204 file consists of one
logical record type, it may contain an optional record type field.

The value for the RECTYPE attribute is the 1 to 66 character field or alias name of the MODEL
204 record type field. The value for the RECTVAL attribute is the identifying value for the
record type field; it can be up to 255 characters in length or a field name. The RECTVAL
attribute is required whenever the RECTYPE attribute is used.

The RECTYPE and RECTVAL attributes are required in each Access File segment declaration
(including the one for the root) if the MODEL 204 file contains record types.

Note: Do not use the name RECTYPE as a field name in the Master File.

Reference ACCESS Attribute

OCCURS segments are generally described only in the Master File and do not require
corresponding segment declarations in the Access File. However, sometimes the number of
occurrences retrieved for an OCCURS segment exceeds the MODEL 204 buffer capacity,
causing an error condition. You can alter the processing of OCCURS segments by including
a segment declaration in the Access File.

The MODEL 204 buffer is used to return data to IFAM2 applications. Buffer capacity is
sometimes exceeded when both of the following conditions exist:

• A multiply occurring field repeats a large number of times (for example, 2000
occurrences).

• The total number of occurrences multiplied by the size of the OCCURS segment is
greater than the size of the IFAMBS buffer. (The IFAMBS size is specified as a parameter
in the MODEL 204 startup procedure.)

The size of the IFAMBS buffer is determined by a predefined formula:
10-32 iWay Software

Getting Started in MODEL 204
IFAMBS := (LIBUFF * 7) + 284 s 32688

When the buffer capacity is exceeded, the MODEL 204 DBMS sends the adapter the
following error message:

IFMORE error M204.0903 - Results too long

This causes the server error message:

(FOC4883) IFMORE FAILED

If you encounter this error condition, you can include a segment declaration in the Access
File to alter the number of occurrences retrieved. The adapter incorporates your
specification in its HLI call to the MODEL 204 DBMS.

An OCCURS segment declaration in an Access File consists of two attributes, SEGNAME and
ACCESS. The ACCESS attribute indicates the type of processing to be performed.

Syntax How to Limit Processing Results With the ACCESS Attribute

 ALL
SEGNAME=name, ACCESS= nnnn[/xxx] ,$
 AUTO[/xxx]

where:

name

Is the SEGNAME value for the OCCURS segment from the Master File.

ALL

Indicates that the adapter will attempt to retrieve all occurrences of the OCCURS
segment. This is the default.

Note: If the ACCESS attribute is omitted, the ALL setting is assumed.

nnnn

Specify the largest number of occurrences that exists for the multiply occurring field.
Based on the nnnn value, the adapter may manipulate the length of the QTBL buffer for
the user session and then reset it to its original length.

AUTO

Indicates that the adapter will retrieve up to 5000 occurrences. If there are more than
5000 occurrences, use nnnn instead of AUTO.
iWay Data Adapter Administration for MVS and VM 10-33

MODEL 204 Access Files
/xxx

Optional; instructs the adapter to issue multiple IFMORE calls, with each call retrieving
xxx occurrences. Append to the nnnn or AUTO parameters to indicate that you want to
control the number of records to be retrieved by each IFMORE call. If xxx is larger than
the maximum allowed (based on the size of the buffers used by the MODEL 204
Adapter), you will receive the message:

(FOC4873) SPECIFIED NUMBER OF INSTANCES CANNOT FIT INTO BUFFER

To correct the problem, decrease the xxx value and rerun the request.
Note:

• You can turn this feature on or off by defining the OCCURS segment in the Access File.
OCCURS segments not described in the Access File undergo normal processing, which
means that the ALL setting is assumed and all occurrences are retrieved at one time.

• If the SEGNAME attribute is specified in the Access File without the ACCESS attribute,
ACCESS=ALL is assumed by default.

• Use this feature when the following error message occurs:

• IFMORE error M204.0903 Results too long

Field Declarations
Field declarations in the Access File provide an alternate method for describing certain
MODEL 204 field characteristics. Include a field declaration if the MODEL 204 field has a
MODEL 204 key designation or if the MODEL 204 field name (the ALIAS attribute) exceeds
66 characters.
10-34 iWay Software

Getting Started in MODEL 204
Reference Types of Key Fields

The MODEL 204 DBMS supports a variety of key field types. The adapter supports the

MODEL 204 key designations with comparable abbreviations called suffix operators. You
describe these operators with the TYPE attribute in the Access File. The actual MODEL 204
key designation determines the proper suffix operator to apply.

The following chart lists MODEL 204 key designations and their corresponding suffix
operators.

Note: Master Files created in earlier server releases may contain field declarations with
suffix operators for MODEL 204 key fields. While this earlier method is supported, the
recommended method is to specify suffix operators in the Access File.

Syntax How to Declare Fields in the Access File

FIELD=field [,ALIAS=m204field] [,TYPE=suffix]
[,ATTRIBUTE=FRV] ,ACCDATA= STR ,$
 NUM

where:

field

Is the field name from the Master File.m204field Is a MODEL 204 field name that
exceeds 66 characters; 256 characters maximum.

MODEL 204 Key Designation Server Suffix Operator

Key KEY

Key, invisible IVK

Ordered Character ORA

Ordered Numeric ORN

Numeric Range RNG

Numeric Range, invisible IVR
iWay Data Adapter Administration for MVS and VM 10-35

MODEL 204 Access Files
suffix

Note:

• Omit the ALIAS attribute if the ALIAS attribute in the Master File already specifies
the MODEL 204 field name.

Is one of the suffix operators KEY, IVK, ORA, ORN, RNG, or IVR.FRV.

• This attribute value incorporates MODEL 204 FOR EACH VALUE processing on a BY
field in a COUNT request.

STR

This attribute value generates character string HLI selection tests for MODEL 204 fields
that do not have a MODEL 204 key specification (Non Ordered, Non KEY, Non Numeric
Range).

NUM

This attribute value generates numeric HLI selection tests for MODEL 204 fields that do
not have a MODEL 204 key specification (Non Ordered, Non KEY, Non Numeric Range).

ATTRIBUTE

incorporates MODEL 204 FOR EACH VALUE processing on a BY field in a COUNT request.
The field defined with ATTRIBUTE=FRV must be a MODEL 204 Ordered field or a MODEL
204 KEY/FRV field.

ACCDATA

instructs the adapter to generate either character string or numeric HLI selection tests
for MODEL 204 fields that do not have a MODEL 204 key specification (Non Ordered,
Non KEY, Non Numeric Range).

For more information on record screening, see Screening Conditions and MODEL 204 HLI
Calls on page 10-39.
10-36 iWay Software

Getting Started in MODEL 204
Summary of Mapping Rules
A careful examination reveals that MODEL 204 and the server use similar elements:

Some general rules for describing MODEL 204 files are:

• Each logical record type becomes a server segment. A server segment may represent
an entire MODEL 204 file (with one logical record type) or one logical record type from
a MODEL 204 file with several record types.

• A MODEL 204 file containing two or more logical record types must have a record type
field to identify each record type.

• A MODEL 204 file containing one logical record type does not require a record type
field; the MODEL 204 file may contain an optional one.

• Relationships can be implemented with the JOIN command or by describing
embedded joins in the file descriptions. The maximum number of MODEL 204 files or
logical record types that can be related is 64 for embedded joins and 16 for dynamic
joins.

MODEL 204 Entities= Server Entities

A MODEL 204 field A server field

A logical record type A server segment

Individual record A segment instance

MODEL 204 file with one record type A server segment

Multiply-occurring MODEL 204 fields in a record A server OCCURS segment
iWay Data Adapter Administration for MVS and VM 10-37

Advanced Reporting Techniques
Advanced Reporting Techniques
The MODEL 204 adapter provides many facilities that read, retrieve, and organize data from
MODEL 204 files. For instance, you can create graphs, design interactive procedures, or
extract data from reports. However, the most widely used facility is the Report Writer; it
produces formatted reports. Reporting features specific to the adapter are discussed in this
chapter.

This chapter discusses:

• MODEL 204 HLI calls generated by the adapter.

• Screening conditions and their effects on MODEL 204 HLI calls.

• Joining structures for reporting purposes, including a comparison between
dynamically-joined structures and multi-table Master Files, unique and non-unique join
relationships, and the multi-field JOIN command.

MODEL 204 HLI Calls
When you issue a report request, the adapter evaluates the request along with the Access
File 'TYPE= suffix operator' attributes (and other Access File attributes) to construct the
most efficient HLI call. It constructs a variety of HLI calls that offload certain processing tasks
to the MODEL 204 DBMS. In most situations, the adapter passes an IFFIND call with all of the
passable selection criteria to the MODEL 204 DBMS.

To display the generated HLI calls, activate the adapter trace facility.

The MODEL 204 adapter:

• Uses the compiled IFAM facility for all IFFIND, IFFAC, IFGET, and IFMORE calls.

• Retrieves data for only those segments and fields specified in the request.

• Retrieves all or a specified number of instances of multiply-occurring fields in one
IFAM2 call. By default, it retrieves all instances of a MFD OCCURS segment; however, if
this exceeds the buffer capacity, you can include the ACCESS attribute in the Access File
to alter the number of occurrences retrieved.

For MODEL 204 files with multiple record types, the adapter uses the value of the RECTYPE
attribute from the Access File to construct an IFFIND call that specifies the appropriate
record type.
10-38 iWay Software

Getting Started in MODEL 204
Screening Conditions and MODEL 204 HLI Calls
For KEY fields, the adapter uses the 'TYPE=suffix operator' attribute in the Access File to
construct HLI calls that it passes to the MODEL 204 DBMS. The following sections illustrate
common selection criteria.

Reference Screening With Equality Tests and HLI

When a MFD field includes the attribute 'TYPE = suffix operator' in the Access File, an
equality test produces an IFFIND call as follows:

Reference Screening With Range Tests (LT,LE,GT,GE) and HLI

When a MFD field includes the attribute 'TYPE = suffix operator' in the Access File, a range
test using LT or GT produces an IFFIND call as follows:

For testing with GREATER THAN OR EQUAL (GE) or LESS THAN OR EQUAL (LE), the adapter
includes a NOT parameter.

Suffix Operator MODEL 204 KEY Type IFFIND Specification

KEY Key =

IVK KEY, invisible =

ORA Ordered character IS ALPHA

ORN Ordered Numeric IS NUM

RNG Numeric Range IS

IVR Numeric Range, invisible IS

Suffix Operator MODEL 204 KEY Type IFFIND Specification

KEY Key IS BEFORE/AFTER

IVK KEY, invisible IS BEFORE/AFTER

ORA Ordered character IS ALPHA BEFORE/AFTER

ORN Ordered Numeric IS NUM LT/GT

RNG Numeric Range IS LESS THAN/GREATER

IVR Numeric Range, invisi-
ble

IS LESS THAN/GREATER
iWay Data Adapter Administration for MVS and VM 10-39

Screening Conditions and MODEL 204 HLI Calls
Reference Screening With Range Tests Using FROM-TO and HLI

When a MFD field includes the attribute 'TYPE = suffix operator' in the Access File, a range
test using FROM-TO produces an IFFIND call as follows:

In recent releases, the HLI IFFIND call has been modified to include the 'IN RANGE FROM TO'
clause. The 'IN RANGE FROM TO' clause increases the efficiency of MODEL 204 index
retrieval for MODEL 204 fields defined as Ordered Numeric (TYPE=ORN) or Ordered
Character (TYPE=ORA).

Suffix Operator MODEL 204 KEY Type IFFIND Specification

KEY Key IS BEFORE/AFTER

IVK KEY, invisible IS BEFORE/AFTER

ORA Ordered character IS ALPHA BEFORE/AFTER

ORN Ordered Numeric IS NUM LT/GT

RNG Numeric Range IS LESS THAN/GREATER

IVR Numeric Range,
invisible

IS LESS THAN/GREATER
10-40 iWay Software

Getting Started in MODEL 204
Syntax How to Test for Missing Instances

In a MODEL 204 file, a field may or may not exist on a record. When a field does not exist on
a record, the adapter considers that field to contain a null value. The null represents a
missing value; it is not the same as a blank or zero. Null data is displayed on reports as a
period (.), the default NODATA display value. To retrieve records that contain null values:

• Make sure the adapter MISSING attribute is set to ON; if necessary, issue the M204IN SET
MISSING ON command.

• Ιn a selection test in your request.

To test for null values, use either of the following selection tests

 WHERE field EQ MISSING
 NE

or

IF field IS MISSING
 IS-NOT
where:

field

Is any field that may be missing.

The following syntax generates an IFFIND call with IS NOT PRESENT criteria:

WHERE field EQ MISSING

or

IF field IS MISSING

The following syntax generates an IFFIND call containing IS PRESENT criteria:

WHERE field NE MISSING

or

IF field IS-NOT MISSING
iWay Data Adapter Administration for MVS and VM 10-41

Screening Conditions and MODEL 204 HLI Calls
Syntax How to Test for Values That Match Masked Fields

A mask is an alphanumeric pattern used in screening tests for matching against the
characters of a field value. The field must have an alphanumeric format. The test condition
can use the LIKE and NOT LIKE operators or the IS, EQ, IS-NOT, and NE relations.

To test for values that match masked fields, use either of the following forms of syntax

WHERE [NOT] field LIKE 'mask'

or

 WHERE field IS 'mask'
 IF EQ
 IS-NOT
 NE

where:

field

Is any field that may contain the matching values.

mask

Is a test value with one or more masking characters. Enclose it in single quotation
marks.

The following are acceptable masking characters.

For the LIKE operator:

• Underscore (_) acts as a placeholder; any character in its position is acceptable.

• Percent sign (%) acts as a wild card; any character string of an unspecified length is
acceptable.

For the IS and EQ relations:

• Dollar sign ($) acts as a placeholder; any character in its position is acceptable.

• For the IS and EQ relations, a dollar sign followed by an asterisk ($*) acts as a wild
card; any character string of an unspecified length is acceptable.

When you issue a request that contains a test on a masked field, the adapter translates the
mask into an IFFIND call with the LIKE attribute. When the MODEL 204 DBMS performs the
processing when it receives the IFFIND call. It searches for the values that match the
specified mask and returns them to the adapter.
10-42 iWay Software

Getting Started in MODEL 204
Syntax How to Specify MODEL 204 Non-Key Fields for Numeric or Character Selection

The adapter is able to issue an IFFIND call with the proper selection criteria for MODEL 204
fields that are not defined to MODEL 204 with any key attributes. You instruct the adapter
to issue either a numeric or character string HLI specification by including the ACCDATA
attribute in the Access File FIELD declaration. The advantages are:

• Processing is more efficient. When the adapter is aware of the type of HLI specification
(numeric test or character string test) to pass to MODEL 204, it constructs one IFFIND
call that allows the MODEL 204 DBMS to process the selection test. If the adapter is not
aware of the type of specification to pass to MODEL 204, it retrieves the fields from
MODEL 204 and the selection test is performed on the returned data.

When a field is defined with 'TYPE = suffix operator' in the Access File, the adapter can
construct an IFFIND call that offloads the record selection to MODEL 204. The ACCDATA
attribute provides the adapter with similar information for non-key fields that are
referenced in selection requests.

• You can override the default numeric or character test on both non-key and key fields.
If a field exists in MODEL 204 as numeric, and you specify the appropriate value for the
ACCDATA attribute, the adapter will pass a numeric HLI test. Similarly, if the field is
stored as a string, the adapter will pass a character string HLI test.

Specify the ACCDATA attribute for fields that will generally be used with selection criteria in
requests and that are not defined to MODEL 204 as Keys, Ordered, or Numeric ranges. The
syntax is

ACCDATA = STR|NUM

where:

STR

Indicates that the field value is a character string.

NUM

Indicates that the field value is numeric.

In this AFD field entry example, field VEHICLE_PREMIUM is not defined with any
TYPE=suffix in the AFD (thus making it a non-key field), however, the ACCDATA attribute
allows selection criteria for alpha data to be included in the generated IFFIND call.
VEHICLE_PREMIUM is defined in the MFD with Usage and Actual formats of A8:

FIELD=VEHICLE_PREMIUM ,ACCDATA = STR,$
iWay Data Adapter Administration for MVS and VM 10-43

Screening Conditions and MODEL 204 HLI Calls
COUNT Processing
The adapter uses the HLI IFFAC (Print and Find Count) command to more efficiently process
a COUNT request on MODEL 204 fields. The adapter passes the IFFAC call, along with all
passable selection tests, to the MODEL 204 DBMS when the request includes the following:

• COUNT * with no record selection clauses. The adapter will issue an IFFAC call with no
selection criteria to count the number of records in a file.

• COUNT * or COUNT with record selection clauses. The adapter will issue an IFFAC call
that includes all passable field selection tests.

Not all selection tests can be passed to the IFFAC. When the adapter encounters a selection
test that it cannot incorporate in the IFFAC call, it first issues an IFFIND call with some or
none of the selection criteria, and next issues IFGET calls; it then evaluates the COUNT by
applying the non-passable selection criteria to the returned data.

The following scenarios contain examples of non-passable selections:

• When a request contains a derived or defined field, the adapter first issues an IFFIND
call containing any passable selection tests, and then issues IFGET calls to evaluate the
defined fields. The adapter does not issue an IFFAC call to retrieve the count, because
selection tests on derived fields cannot be passed to MODEL 204, and they would
modify the number of records counted if they were passed.

• When a selection request references MODEL 204 fields that are not defined as key
fields, the adapter cannot pass them to the IFFAC call. It issues an IFFIND call followed
by IFGET calls. See How to Specify MODEL 204 Non-Key Fields for Numeric or Character
Selection on page 43 for information on how to use the ACCDATA attribute in the AFD
to enable these fields to be passed in the HLI request.

Example COUNT With a BY Field on the Same Segment

Consider the following request:

COUNT CAR BY MODEL

If the Access File record for the MODEL field includes the attribute ATTRIBUTE=FRV, and if a
passable selection exists on MODEL, the adapter will construct HLI calls to incorporate
MODEL 204 FOR EACH VALUE processing. First, the adapter will construct an IFFDV call with
selection criteria to create a list of all distinct values of MODEL. It will then issue IFGETV calls
to extract each value, followed by IFFAC calls incorporating both selection on the MODEL
field and any other passable selection criteria.

If the MODEL field is defined without ATTRIBUTE=FRV in the Access File, there will be no
FOR EACH VALUE processing.
10-44 iWay Software

Getting Started in MODEL 204
Adapter Environmental Commands
Adapter environmental commands enable you to change parameters that govern its
behavior. These parameters control or identify MODEL 204 account security, the size of all
adapter buffers, the size of the MODEL 204 FTBL buffer, null values in reports, locked
records, and thread management. To display current adapter parameter settings, issue the
adapter M204IN SET ? query command. You can issue these commands from a RPC. They
remain in effect for the duration of the client (connector?) task or until you change them.

The syntax for adapter SET commands includes an MVS or TSO environmental qualifier and
the M204IN keyword.

{MVS|TSO} M204IN SET command value

where:

command

Is an environmental command.

value

Is an acceptable value for the environmental command.

Although the commands are prefixed with the environmental qualifiers TSO or MVS, the
adapter handles them, not the operating system.

Note: The TSO and MVS environmental qualifiers are synonymous and can be used
interchangeably.

M204ACCNT and M204PASS Commands
Users can supply MODEL 204 accounts and passwords with the adapter M204IN SET
M204ACCNT and M204PASS commands. Authorized accounts (userids) and passwords
protect read access to MODEL 204 files or groups of files.

Note: Prior releases of the MODEL 204 Adapter utilized SET M204ACCNT and SET M204PASS
command syntax. These are no longer valid. Please use the M204IN SET M204ACCNT and
M204IN SET M204PASS commands instead.

The M204IN SET M204ACCNT and M204PASS commands provide an alternative to
supplying security information in encrypted Access Files. You can also use the M204IN SET
M204ACCNT and M204PASS commands to override existing account and password values
specified with the ACCOUNT and ACCOUNTPASS attributes in the Access File.

To specify an account, issue the following from the command level

{MVS|TSO} M204IN SET M204ACCNT account
iWay Data Adapter Administration for MVS and VM 10-45

Adapter Environmental Commands
where:

account

Is a 1 to 16 character name for an authorized MODEL 204 account (userid).

To specify a password for an account, issue the following from the command level

{MVS|TSO} M204IN SET M204PASS password

where:

password

Is a 1 to 16 character password for the account.

Note: If you do not issue the SET commands or you leave the values blank, they default to
the values of the ACCOUNT and ACCOUNTPASS attributes specified in the Access File.

You can also supply values for accounts and passwords with a Dialogue Manager local
variable.

MAXMBUFF Command
Users can set or change the maximum size of all adapter buffers with the M204IN SET
MAXMBUFF command.

Before you issue the M204IN SET MAXMBUFF command, consider that the MAXMBUFF
value:

• Should be greater than the larger of two MODEL 204 buffer settings, LIBUFF and
LOBUFF. To identify which buffer is larger, check the parameters in the MODEL 204
start-up procedure or use the Adapter Trace Facility (SET TRACEON=M204IN) to display
the settings.

• Should be equal to the size of the largest segment in the Master File if the segment size
is greater than the MODEL 204 LIBUFF and LOBUFF buffer settings. Having the
maximum buffer size equal to that of the largest segment prevents S0C4 ABEND
conditions.

To specify the capacity of the adapter buffers, issue the following:

{MVS|TSO} M204IN SET MAXMBUFF nnnn

where:

nnnn

Is the maximum size in bytes. For example, specify 4096 for a MAXMBUFF value of 4K.
Unless you explicitly issue this command, it is not used and there is no default value.
10-46 iWay Software

Getting Started in MODEL 204
FTBL Command
The M204IN SET FTBL command enables users to control the size of the MODEL 204 FTBL
buffer. The LFTBL parameter, specified in the MODEL 204 start-up procedure, governs the
size of the FTBL buffer; you can change it for the current client session only. Issue this
command when a MODEL 204 error message indicates that the LFTBL value is too small.

The syntax is

{MVS|TSO} :M204IN SET FTBL nnnn

where:

nnnn

Is the FTBL size in bytes. For example, specify 4096 for an FTBL value of 4K.

You should set FTBL to a value larger than the previously defined

MODEL 204 LFTBL value.

Note: The FTBL value you set applies for the current user session only; it is reset when the
session is ended.

MISSING Command
With the adapter M204IN SET MISSING command, users can control the display of MODEL
204 null data on reports. Null data is translated into the missing data display value. The
default NODATA display value is the period (.). When the adapter MISSING attribute is set
ON, the edit specification for all IFGET calls includes an (L) format code. If MODEL 204
returns a zero in the first byte, the adapter considers that field to be missing.

Note: IFFIND calls contain IS PRESENT or IS NOT PRESENT criteria only when the request
includes an IF or WHERE MISSING selection test.

If you want to indicate missing data on reports, issue the following:

{MVS|TSO} M204IN SET MISSING {ON|OFF}

where:

ON

Uses the NODATA value to display MODEL 204 null data.

OFF

Null values are not represented on reports.This is the default value.
Note:

• The default setting can affect the results of SUM or COUNT aggregate operations. Null
values may be counted or averaged in as existing values.

• You must issue the M204IN SET MISSING ON command in order to specify screening
conditions (IF or WHERE MISSING tests) for null values.
iWay Data Adapter Administration for MVS and VM 10-47

Adapter Environmental Commands
READWOL Command
When retrieving records, the MODEL 204 DBMS usually holds locks on the appropriate
records to ensure accurate data for reports. The locks prevent other users from updating
the target records while MODEL 204 constructs answer sets. The adapter generates
standard IFFIND calls that lock the found set in SHR mode.

For certain circumstances, you can issue the adapter SET READWOL (read without locks)
command to instruct the adapter to issue an IFFWOL (find without locks) HLI call. Use the
following syntax to turn the setting ON:

{MVS|TSO} M204IN SET READWOL ON

For information about the design and performance considerations involved in deciding
when to use the MODEL 204 IFFWOL command instead of the IFFIND command, consult
the MODEL 204 Host Language Adapter Programming Guide.

SINGLETHREAD Command
The adapter M204IN SET SINGLETHREAD command enables users to control MODEL 204
thread management during record retrieval. A thread is a communications path or link
between the adapter and the MODEL 204 DBMS. Adapter requests (generated HLI calls) are
transmitted using threads. Threads are deallocated after each adapter request is processed.

There are two types (or modes) of thread management:

• Multiple. The adapter creates as many threads as it needs whenever they are needed
to access files.

• Single. The adapter creates one thread for all file access; this restricts processing to one
request.

To change the mode, issue the following from the command level

{MVS|TSO} M204IN SET SINGLETHREAD {ON|OFF}

where:

ON

Forces the adapter to use a single thread for all file access.

OFF

 Allows the adapter to use multiple threads. This is the default value.

For example, if a request joins 10 files and the SINGLETHREAD setting is ON, only one thread
is used to access all of the files. If the setting is OFF, up to 10 threads may be used. For
performance reasons, the OFF setting is recommended.
10-48 iWay Software

Getting Started in MODEL 204
M204IN SET ? Query Command
The adapter M204IN SET ? query command displays adapter defaults and current settings.
Issue the following:

{MVS|TSO} M204IN SET ?

Data Adapter Tracing Facility
To activate the MODEL 204 Data Adapter Tracing Facility, specify the following:

SET TRACEON=M204IN

Customized Security Exits for MVS
Your database administrator can also provide MODEL 204 logon and account information
with security exits written in COBOL or Assembler. The Model 204 Adapter supports this
method of supplying security information through exit parameters. The security exit is site
specific and must be named M204EXT. The M204EXT program is executed only when the
ACCOUNT name and PASSWORD have not been previously defined to the adapter either in
the Access File, with a Dialogue Manager &variable, or by issuing the M204IN SET
commands. The adapter calls the M204EXT exit with the following syntax

CALL M204EXT(USR,ACCNT,ACCNTP)

where:

USR

Is the 8-character server logon userid that is passed to the security exit.

ACCNT

Is the 16-character MODEL 204 account (userid) that is returned from the exit.

ACCNTP

Is the associated 16-character account password that is returned from the exit.

When a user issues a request to access MODEL 204 data, the adapter calls the M204EXT exit
using standard IBM calling conventions and passes the three parameters to the exit. Based
on the supplied userid (USR), the exit returns the account and password values to the
adapter. The adapter uses the returned values to generate the IFSTRTN call. (The IFSTRTN
call initiates an internal logon to the MODEL 204 DBMS before the user's request for
services is executed.) After generating the IFSTRTN call, the adapter erases the values from
memory.
iWay Data Adapter Administration for MVS and VM 10-49

Adapter Environmental Commands
To use the security exit, the database administrator must:

1. Write the security exit in COBOL or Assembler. The program name must be M204EXT.

A sample Assembler M204EXT security exit program is provided in the
'EDALIB.DATA(M204EXT)' data set; the sample can be modified according to your site's
standards.

2. Link-edit the object module into a load library with AMODE(31). For example,

//LINK EXEC PGM=IEWL,
// PARM='LET,NCAL,SIZE=(1024),LIST'
//OBJLIB DD DSN=objlib.LOAD,DISP=SHR
//SYSLMOD DD DSN=loadlib.LOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,1))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *
 INCLUDE OBJLIB(M204EXT)
 MODE RMODE(31),AMODE(31)
 ENTRY M204EXT
 NAME M204EXT(R)
/*

where:

objlib.LOAD

Is the name of the partitioned data set (PDS) that contains the M204EXT object code.

loadlib.LOAD

Is the load library that is to contain the M204EXT load module.

3. Either link the M204EXT load module into the 'prefix.EDALIB.LOAD' data set, or allocate
it to ddname STEPLIB.
10-50 iWay Software

CHAPTER 11

11.Getting Started in MQSeries

Topics:

• MQSeries Data Adapter

• MQSeries Master File Attributes

• MQSeries Access Control

These topics describe how to modify your server and
communications configuration files for the MQ Series Data
Adapter.
iWay Data Adapter Administration for MVS and VM 11-1

MQSeries Data Adapter
MQSeries Data Adapter
The MQSeries Data Adapter allows applications to store data as a logical table and retrieve
data as an answer set in order to extend usage of MQSeries as a temporary relational data
source. In the current server implementation, there are two ways in which the adapter can
be used. For the purpose of this document, they are called:

• Server family messages

• Foreign messages

Server family messages are messages created by the MQSeries Data Adapter. These
messages are stored as logical sets, metadata, and data. This implementation allows the
server to store results of queries on the sending end, recreate metadata on the receiving
end, and retrieve the data as it would from any relational data source. Access to any DBMS
requires an active connection, which is not always available. One example of an
implementation would be an asynchronous DBMS access.

Foreign messages are messages produced by non-server software. The MQSeries Data
Adapter can retrieve any message, but the user must first create metadata.

MQSeries Master File Attributes
Each Master File begins with a file declaration. The file declaration has two attributes:

FILENAME (FILE)

Identifies the Master File.

SUFFIX

Identifies the data adapter needed to interpret the request.
11-2 iWay Software

Getting Started in MQSeries
Syntax How to Describe a Master File for MQSeries

FILE[NAME]=file, SUFFIX=FIX [,$]
FIELD=MSGID,

ALIAS=41423000,USAGE=A48,A48,$
FIELD=CORID,

ALIAS=4942495F434F525F49443200000000000000000000000000,USAGE=A48,A48,$
FIELD=TIMEOUT,ALIAS=0,USAGE=I4,I4,$

where:

file

Is the file name for the Master File. The file name without the .mas extension can consist
of a maximum of eight alphanumeric characters. The file name should start with a letter
and be representative of the table or view contents. The actual file must have a .mas
extension, but the value for this attribute should not include the extension. If the
Master File is produced by a create synonym mechanism, the value will be the logical
name used by the HOLD command.

FIX

Is the value for the MQSeries Data Adapter.

MSGID

Is the optional parameter used when producing messages in a queue that are
dynamically defined outside of the program assigned message ID.

CORID

Is used internally for sending meta-information and data in separate messages when a
HOLD file is produced.
iWay Data Adapter Administration for MVS and VM 11-3

MQSeries Access Control
MQSeries Access Control
The following topics describe MQSeries Access Control:

• MQSeries permissions.

• MQDEF command.

In any computer system, it is important that data be secured from unauthorized access.
Both MQSeries and the server provide security mechanisms to ensure that users have
access to only those objects for which they have authorization.

MQDEF Command
Because a queue in MQSeries can be viewed as a sequential file, the server uses the logical
layer of a fixed file interface. In order to distinguish between sequential file storage types
and MQSeries storage types, the MQDEF command must be issued prior to any Read/Write
request against MQSeries. The MQDEF command is similar to FILEDEF and is used to
provide definitions for Queue Manager, Queue Name, and the optional Message-ID to MQI
layer.

Syntax How to Issue the MQDEF Command

MQDEF mfdname QMAN qmgr_name QUEUE qname [MSGID msg_id]

where:

mfdname

Is the memory resident Master File's file name, used to provide the dynamic definitions
of the queue manager, queue, and optional message ID.

qmgr_name

Is the name of the queue manager defined using MQDEF.

qname

Is the name of the queue defined using MQDEF.

msg_id

Is the optional parameter used when producing messages in a queue that are
dynamically defined outside of the program assigned message ID.

In general, the MQDEF command can be viewed as a mechanism that not only defines
MQSeries objects, but also sets the access method. For example:

FILEDEF EMPLOYEE

Subsequent read/write operations on logical table EMPLOYEE are attempted against a
sequential file using I/O routines.

MQDEF EMPLOYEE
11-4 iWay Software

Getting Started in MQSeries
Subsequent read/write operations on logical table EMPLOYEE are attempted against
MQSeries queues using MQI interface.

Every read/write operation erases the association of MQDEF.

Writing Data into the MQSeries Using the HOLD Command
The common purpose of the MQSeries Data Adapter is to retrieve data from a DBMS and
hold it in the MQSeries queue for:

• Asynchronous retrieval and processing.

• Retrieval from DBMS at one location for subsequent storage in a remote queue for
retrieval at a different location.

The MQDEF command and HOLD request are identified by the name used in the AS
parameter. The result of the HOLD command is two logical messages in a queue. One
logical message is metadata, a replica of the Master File description; the other contains the
data. Each message contains the same message ID, but it is the correlation ID that
differentiates them. The message ID is automatically generated from the AS parameter. It
can also be stated explicitly using the MQDEF command.

Syntax How to Hold Data in the MQSeries Queue

ON TABLE HOLD AS mfdname FORMAT fmt

where:

mfdname

Is the memory resident Master File's file name, which is used to provide the dynamic
definitions of the queue manager, queue, and optional message ID.

fmt

Is the name of the format in which the DATA message is sent (alpha).

An example of retrieving data from Oracle and holding it in MQSeries follows:

MQDEF HOLD1 QMAN QMGR1 QUEUE QLOCAL1
SQL
SQLORA SELECT * FROM EMPLOYEE;
TABLE
ON TABLE HOLD AS HOLD1
END
iWay Data Adapter Administration for MVS and VM 11-5

MQSeries Access Control
Reading Data from MQSeries
Any read/write operation of the MQSeries Data Adapter must be preceded by the MQDEF
command in order to switch to MQI and identify MQSeries objects. In a successful retrieval
operation, the adapter destroys metadata and data logical records from the queue. An
example of data retrieval follows.

MQDEF HOLD1 QMAN QMGR1 QUEUE QLOCAL1
SQL
SELECT * FROM HOLD1;
END

CREATE SYNONYM for the MQ Series Adapter
The Master File description is associated with an MQSeries queue by the MQDEF command.
The data adapter looks first for the MQDEF command, and then for the FILEDEF command.
Some special virtual fields that may be described in the Master File description are defined
in order to set the message ID, correlation ID, and time-out interval. The correlation ID is
used internally for sending meta-information and data in separate messages when the
HOLD file is produced. The CREATE SYNONYM command creates a Master File description
based on messages that contain meta-information.

CREATE SYNONYM synonym FOR qmanager.queue.msgid DBMS FIX

Access files are not created when creating synonyms from an MQSeries queue.
11-6 iWay Software

Getting Started in MQSeries
Retrieving Foreign Messages From a Queue
The Master File must be manually created along with a focus program (fex) to extract
messages from an MQSeries queue. For example:

FILE=MQS1,SUFFIX=FIX,$
SEGNAME=ROOT, SEGTYPE=S0,$
FIELD=MESSAGE, ALIAS=AA, USAGE=A720, A720 ,$
GROUP=SPECIALS, ALIAS= , USAGE=A100, A100,$
FIELD=MSGID ALIAS= , USAGE=A48, A48 ,$
FIELD=CORID, ALIAS= , USAGE=A48, A48 ,$
FIELD=TIMEOUT, ALIAS=0 , USAGE=I4, I4 ,$

A FOCEXEC should also be written to extract these messages. For example, the following
FOCEXEC extracts all messages from the queue:

-*
-DEFAULTS &N=0
-TYPE *** MQDEF FOR QUEUE
MQDEF MQS1 FREE
MQDEF MQS1
 QMAN myqueue
 QUEUE MQHOLD1
-*
-LOOP
-*
-SET &N=&N+1;
-TYPE *** READ MESSAGE &N FROM QUEUE
SQL
SELECT MESSAGE FROM MQS1
END
-RUN
-*
-IF &LINES NE 0 GOTO LOOP;
-*
-TYPE *** QUEUE IS EMPTY
MQDEF MQS1 FREE
iWay Data Adapter Administration for MVS and VM 11-7

MQSeries Access Control
MQMSGID Fuse Function
The MQMSGID Fuse function assists in application development.

Syntax How to Generate the MQMSGID Fuse Function

An example of this function, used to populate a dialogue manager variable, follows:

-SET &MSGID = MQMSGID(QMGR, QUEUE, ANY, 'A48');

where:

QMGR

Is the name of the queue manager.

QUEUE

Is the name of the queue.

ANY

Looks for first server message or any first message.

A48

Is the length of the message ID.

MQMSGID()

Retrieves the message ID according to following logic:

It looks for the server metadata correlation ID:

if found, return Message ID
else
if third parameter 'ANY',
return Message ID of the first message in the queue
else
return empty string

Qmanager name and Queue name variables must be padded with at least one blank.

The FIX File Adapter, or any user-written application, can process a DATA message.
11-8 iWay Software

CHAPTER 12

12.Getting Started in NOMAD

Topics:

• Mapping Concepts in NOMAD

• How the Data Adapter Accesses
NOMAD

• Answer Set Generation in NOMAD

• Describing Data Sources in NOMAD

• NOMAD Access Control

• Creating File Descriptions With
AUTONMD

The NOMAD Data Adapter operates under the VM
operating system and can only access native NOMAD
databases.

The data adapter provides read-only access to NOMAD
databases using the Programmer Interface NPI2 supplied
with the NOMAD product.

Support for NOMAD security features are complemented
by the server DBA facility, which provides user access
control at the file, field, and field value levels.
iWay Data Adapter Administration for MVS and VM 12-1

Mapping Concepts in NOMAD
Mapping Concepts in NOMAD
The server requires a Master and Access File in order to access a non-relational data source
such as NOMAD.

The server represents NOMAD segments as server segments, and NOMAD ITEMS as server
fields. NOMAD arrays are represented as an OCCURS segment.

A NOMAD schema defines a NOMAD database. The NOMAD Master is equivalent to the first
segment, also known as the ROOT segment in a server Master File.

MISSING=ON forces the data adapter to convert NOMAD’s representation for a standard
NOTAVAILABLE value of a field to the MISSING value in the server.

Hierarchical Structure in NOMAD
A hierarchical database is a collection of segments associated through parent-child
relationships. Each segment is a child (or dependent) of the segments directly above it in
the hierarchy and is a parent of all segments directly below it. A segment can have multiple
children or no children, but it can have only one parent. Segment instances of the same
type with the same parent are called twins. The root segment (NOMAD Master) is the
segment at the top of the tree; it has no parent. There can be multiple Masters in a single
NOMAD schema. A segment consists of fields (NOMAD ITEMS), which are the smallest
logical unit of data that an application can request. This ordering of segments is called the
hierarchical sequence. A database record consists of a root segment instance along with all
of its descendant segment instances in hierarchical sequence. The hierarchical path to a
segment instance consists of the segment itself and all of its ancestors, starting from the
root.

You do not have to describe every segment from a NOMAD Master in the Master File.
However, the portion of the hierarchy you describe must be a subtree starting from the
root. In a subtree, when you include a child segment, you must also include its parent. The
following diagram illustrates the concept of a subtree:
12-2 iWay Software

Getting Started in NOMAD
The following topics illustrate where each element that goes into the Master File comes
from in the NOMAD schema. Note the following:

• A NOMAD ITEM is equivalent to a field in the Master File.

• A NOMAD Master must correspond to the root segment in the Master File.

• A NOMAD segment corresponds to a segment in the Master File.

• NOMAD arrays are represented with an OCCURS segment in the Master File.

How the Data Adapter Accesses NOMAD
Listed below are the steps that the data adapter uses to access NOMAD. When you issue a
request such as SELECT TYPE FROM LANIF, the server processes the request with the
following steps:

1. Locates the Master File named LANIF.

2. Examines the SUFFIX attribute in the Master File. Each Master File that describes a
NOMAD database must include the attribute SUFFIX=NMDIN. When the server detects
this suffix, it passes control to the data adapter.

3. Examines the Master File. Then checks the Access File, which must have the same name
as the Master File (LANIF in this example).

The data adapter uses the information contained in both the Master File and Access File
to generate the NOMAD calls required for navigation of the NOMAD database.

4. The data adapter accepts the data retrieved by the NOMAD DBMS and returns control
to the server. For some requests, the server may perform additional processing on the
returned data.

5. The data adapter makes the best effort to use keyed retrieval in order to be as efficient
as possible. The NPI Fast Calls use the most efficient call available for retrieving the data.
iWay Data Adapter Administration for MVS and VM 12-3

Answer Set Generation in NOMAD
Answer Set Generation in NOMAD
To provide completely transparent SQL access, SQL Translation Services in the server
creates a Cartesian product style answer set in all cases, regardless of the nature of the
underlying DBMS. A Cartesian product style answer set is in keeping with the SQL-based
nature of the server data access mechanism.

Cartesian Products (NOMAD)
A Cartesian product or set multiplication is defined as the pairing of each element of x with
every element of y. This type of response is the expected result of a relational JOIN.

This means that in some instances, the answer sets that you receive are larger than
expected. The Cartesian product generation only affects situations involving JOINs, either
implicit or explicit.

• An explicit join is defined in the SQL statement used to generate the answer set.

• An implicit join is a reference to any data structure that is made up of independent
parts, such as segments in a hierarchy.

For example, suppose we have a three segment hierarchical database. The top segment
represents professional departments; one child segment represents employees; and the
last represents the furniture used in that department. Assume that the payroll department
has twenty employees, and twenty-two desks. If you ask for all of the employees and
furniture from the payroll department, the SQL user would expect to see each employee
listed twenty-two times, once for each desk. This type of answer is the Cartesian product set
answer and is consistent with the result one would expect from an SQL-based DBMS.

The Cartesian product set answer can appear only under specific circumstances, with multi-
path requests in a hierarchical data structure.
12-4 iWay Software

Getting Started in NOMAD
Syntax How to Control the Cartesian Product Answer Set in NOMAD

The Cartesian product enables you to generate a report containing all combinations of
non-related records or data instances for each row of an answer set. Depending on how you
request the data, the Cartesian product style answer set can be disabled through two SET
commands:

• For an SQL request, the syntax is:

SQL
SET SQLTCARTES= {OFF|ON}
END

• For a TABLE Services request, the syntax is

SET CARTESIAN = {OFF|ON}

where:

OFF

Disables the Cartesian product. This is the default for a TABLE Services request.

ON

Enables the Cartesian product and generates all possible combinations of non-
related records. This is the default when using SQL to query NOMAD data.

Describing Data Sources in NOMAD
In order to access a NOMAD database using the server, you must first describe it to the
server in two files: a Master File and an associated Access File.

The Master File describes the columns of the data source table using keywords in comma-
delimited format. The Access File includes additional parameters that complete the
definition of the data source.

Master and Access Files can represent an entire NOMAD hierarchy or part of a NOMAD
hierarchy. Also, several pairs of Master and Access Files can define different subsets of
columns for the same table, or one pair of Master and Access Files can describe several
tables.

The AUTONMD tool automatically creates Master and Access Files from the NOMAD
schema.
iWay Data Adapter Administration for MVS and VM 12-5

Describing Data Sources in NOMAD
NOMAD Master Files
The following topics describe the types of Master File declarations:

Each declaration must begin on a separate line. A declaration consists of attribute-value
pairs separated by commas. A declaration can span as many lines as necessary, as long as
no single keyword-value pair spans two lines.

Do not use system or reserved words as names for files, segments, fields, or aliases.
Specifying a reserved word generates syntax errors.

Syntax How to Identify Master Files for NOMAD

Each Master File begins with a file declaration. The file declaration has two attributes:

FILENAME (FILE)

Identifies the Master File.

SUFFIX

Identifies the data adapter needed to interpret the request.

The syntax is

FILE[NAME]=file, SUFFIX=NMDIN [,$]

where:

file

Is the file name for the Master File. The file name can consist of a maximum of eight
alphanumeric characters. The file name should start with a letter and be representative
of the table or view contents.

NMDIN

Is the value for the NOMAD Data Adapter.

Declaration Type Description

File Names the file and describes the type of data source.

Segment Identifies a table, file, view, or segment.

Field Describes the columns of the table or view.
12-6 iWay Software

Getting Started in NOMAD
Syntax How to Specify NOMAD Segments

Each table described in a Master File requires a segment declaration. The segment
declaration consists of these attributes:

SEGNAME

Identifies one database.

SEGTYPE

Always has a value of S0 (S zero).

PARENT

Identifies the name of the parent segment.

The syntax for a segment declaration is

SEGNAME=segname, SEGTYPE=S0, [PARENT=parent] [,$]

where:

segname

Is the segment name that serves as a link to the actual NOMAD database name. It can
consist of a maximum of 8 alphanumeric characters. It may be the same as the name
chosen for FILENAME, the actual database name, or an arbitrary name.

The SEGNAME value in the Master File must be identical to the SEGNAME value
specified in the Access File.

S0

SEGTYPE always has a value of S0 (S zero).

parent

Is the name of the parent segment from the NOMAD database.
iWay Data Adapter Administration for MVS and VM 12-7

Describing Data Sources in NOMAD
Syntax How to Specify NOMAD Fields

Each row in a table may consist of one or more columns. These columns are described in
the Master File as fields with the following primary field attributes:

FIELDNAME

Identifies the name of a field.

ALIAS

Identifies the full NOMAD column name.

USAGE

Identifies how to display a field on reports.

ACTUAL

Identifies the NOMAD data type and length in bytes for a field.

MISSING

Identifies whether a field supports null data.

You can get values for these attributes from the NOMAD schema definition or standard
NOMAD dictionary reports.

The syntax for a field declaration is

FIELD[NAME]=fieldname, ALIAS=itemname, [USAGE=]display_format,
 [ACTUAL=]storage_format [,MISSING=ON], $

where:

fieldname

Is the unqualified name of the field. This value must be unique within the Master File.
The name can consist of a maximum of 48 alphanumeric characters (including any file
name and segment name qualifiers and qualification characters you may later prefix to
them in your requests). The name must begin with a letter. Special characters and
embedded blanks are not recommended.

It is not necessary to describe all the columns of the NOMAD database in your Master
File.

itemname

Is the full NOMAD ITEM name. This value is mandatory (the data adapter uses it to
navigate the NOMAD database).
12-8 iWay Software

Getting Started in NOMAD
display_format

Is the display format. The value must include the field type and length and may contain
edit options.

The data type of the display format must be identical to that of the ACTUAL format. For
example, a field with an alphanumeric USAGE data type must have an alphanumeric
ACTUAL data type.

Fields or columns with decimal or floating point data types must be described with the
correct scale (s) and precision (p). Scale is the number of positions to the right of the
decimal point. Precision is the total length of the field.

For the server, the total display length of the field or column includes the decimal point
and negative sign. In SQL, the total length of the field or column excludes positions for
the decimal point and negative sign.

For example, a column defined as DECIMAL(5,2) would have a USAGE attribute of P7.2
to allow for the decimal point and a possible negative sign.

storage_format

Is the storage format of the NOMAD data type and length, in bytes, for the field. For
more information on data type support, see the iWay SQL Reference manual.

MISSING=ON

Displays the character specified by the NODATA parameter for missing data. The
MISSING=ON parameter forces the data adapter to convert NOMAD’s representation
for a NOTAVAILABLE value of an ITEM to a MISSING value.

MISSING Attribute in NOMAD
In a table, a null value represents a missing or unknown value; it is not the same as a blank
or a zero. For example, a column specification that allows null values is used where a
column need not have a value in every row (such as a raise amount in a table containing
payroll data).

Note:

• The default NODATA character is a period.

• A column in a NOMAD table that allows null data does not need to include the NULL
clause in its table definition, since that is the default. In the Master File for that table, the
column that allows null data must be described with the MISSING attribute value ON.
iWay Data Adapter Administration for MVS and VM 12-9

Describing Data Sources in NOMAD
Arrays in NOMAD
The concept of arrays in a NOMAD file is supported by the server and is described using the
OCCURS attribute. The OCCURS attribute is defined at the segment level in the server
Master File. The server can process both variable and fixed dimensional arrays.

Syntax How to Specify ARRAY ITEMS in NOMAD

In order to support NOMAD ARRAY ITEMS in the server, the Master File contains virtual
OCCURS segments. Each segment consists of one NOMAD ARRAY ITEM name and an
OCCURS field. The syntax in the Master File for the OCCURS segment is:

SEGNAME=segname, SEGTYPE=S0, PARENT=parentname, OCCURS=x ,$
 FIELD=fieldname, ALIAS=nomadname, USAGE=usage, ACTUAL=actual,
 MISSING=ON,$
 FIELD=ordername, ORDER, I4, I1 ,$

where:

segname

Is any valid segment name.

parentname

Is the name of a hierarchical parent segment, which contains the ARRAY ITEMS. The
PARENT attribute is mandatory and refers to the segment that contains the ARRAY
ITEM.

x

Indicates the type of NOMAD arrays.

Possible values are:

VARIABLE

Indicates variable size NOMAD arrays.

n

Indicates a fixed number of the NOMAD array instances.

fieldname

Is any valid field name.

nomadname

Is the valid NOMAD ITEM name.
12-10 iWay Software

Getting Started in NOMAD
usage

Is the display format. The value must include the field type and length and may contain
edit options.

The data type of the display format must be identical to that of the ACTUAL format. For
example, a field with an alphanumeric USAGE data type must have an alphanumeric
ACTUAL data type.

Fields or columns with decimal or floating point data types must be described with the
correct scale (s) and precision (p). Scale is the number of positions to the right of the
decimal point. Precision is the total length of the field.

For the server, the total display length of the field or column includes the decimal point
and negative sign. In SQL, the total length of the field or column excludes positions for
the decimal point and negative sign.

For example, a column defined as DECIMAL(5,2) would have a USAGE attribute of P7.2
to allow for the decimal point and a possible negative sign.

actual

Is the storage format of the NOMAD data type and length in bytes. For more
information on data type support, see the iWay SQL Reference manual.

ordername

Is any valid field name.

MISSING=ON

Forces the data adapter to convert NOMAD’s representation for a NOTAVAILABLE value
of an ITEM to a MISSING value.
iWay Data Adapter Administration for MVS and VM 12-11

Describing Data Sources in NOMAD
Syntax How to Specify the Sequence of Data

Sometimes the sequence of fields within an OCCURS segment is significant. For example,
each instance of the repeating field may represent one quarter of the year, but the segment
may not have a field that specifies which quarter it applies to.

ORDER is an optional counter used to identify the sequence number within a group of
repeating fields. Specify it when the order of data is important. The ORDER field does not
represent an existing field in the database; it is used for internal processing only.

The ORDER field must be the last field described in the OCCURS segment.

FIELDNAME=fieldname, ALIAS=ORDER, USAGE=In, ACTUAL=I4 ,$

where:

fieldname

Is any valid field name.

In

Is an integer format.

Note:

• The ALIAS value must be ORDER.

• The ACTUAL format must be I4.

• The ORDER field must be the last field defined in the OCCURS segment.

In requests, you can use the value of the ORDER field. You can also specify a DEFINE
statement in the Master File in order to translate it into more meaningful values. For
example,

DEFINE...
QTR/A3 = DECODE ORDER(1 ‘1ST’ 2 ‘2ND’ 3 ‘3RD’ 4 ‘4TH’)
.
.
.

A subsequent request could include

SELECT TAXES ...
WHERE QTR = 1

or

SELECT QTR,BALANCE,INTEREST ...
12-12 iWay Software

Getting Started in NOMAD
NOMAD Access Files
Each Master File must have a corresponding Access File. The file name of the Access File
must be the same as that used for the Master File.

The Access File serves as a link between the server and the data source by providing the
means to associate a segment in the Master File with the table it describes. The Access File
minimally identifies the table and primary key.

The Access File contains only one DBNAME statement, which provides the name of a
NOMAD DB. The DBNAME statement may include user and password information if
required to allow access to the NOMAD DB.

The SEGNAM statement provides information about NOMAD’s MASTER/SEGMENT name.

In order to support NOMAD’s DEFINE and TEXT ITEMS, the Access File must contain FIELD
statements, referring to the appropriate field name in the Master File and TYPE=DEF or
TEXT.

The key for the segment must be declared in the KEY statement. It lists all components of
the key in the appropriate order divided by slashes. The KEY statements should be the last
declaration for the segment. All FIELD and KEY statements belong to the immediately
preceding SEGNAM statement.

The following is an illustration of an Access File:

DBNAME=DEPARTMENT,$
SEGNAM=DEPARTME, NOMSEG=DEPARTMENT,$
KEY=DEPCODE,$

SEGNAM=EQUIPMEN, NOMSEG=EQUIPMENT,$
FIELD=CURVAL, TYPE=DEF,$
KEY=INVNUM,$

It is important that all TEXT and DEFINE ITEMS be included in the Access File. Only NOMAD
TEXT ITEMS and DEFINED ITEMS need to be described to the Access File.

If there is security on your file(s), the user ID and password are required. The syntax is:

DBNAME=dbname, USER=userid, PASSWORD=password,$
iWay Data Adapter Administration for MVS and VM 12-13

Describing Data Sources in NOMAD
Reference Segment Declarations in NOMAD

The segment declaration in the Access File establishes the link between one segment of the
Master File and the actual NOMAD segment. Attributes that constitute the segment
declaration are:

DBNAME

Specifies the NOMAD schema name. This is a required field.

USER

Optional field, required only if the file requires security access.

PASSWORD

Optional field, required only if the file is password protected.

SEGNAM

Specifies the name of the server segment being described. It can consist of a maximum
of 8 characters. It is the same as the SEGMENT parameter of the server Master File.

NOMSEG

The server truncates the NOMAD file name to 8 characters for SEGNAM. NOMSEG does
not have the 8-character limitation, and will be the full 16 character NOMAD segment
name.

Reference Segment Keywords in NOMAD

Attributes that constitute the segment keywords are:

TYPE

Is only used to describe NOMAD DEFINE and TEXT fields. The TYPE keyword can consist
of DEF, which refers to a NOMAD defined field, or TEXT, which refers to a NOMAD text
field. The AUTONMD program creates the Access File with this information.

KEY

The NOMAD key the server uses to access the NOMAD database. The key can be more
than one field. The proper syntax with multiple fields is to describe each field separated
by a slash; for example, field1/field2/field12.

Note: The fields do not have to be contiguous in the file.
12-14 iWay Software

Getting Started in NOMAD
Example Defining Key Fields in NOMAD

The primary key in NOMAD can appear anywhere in the record. It is defined in the Access
File with KEY=keyfield(s). The key must be the last field described under the SEGNAME. If
the key consists of multiple fields, the syntax is:

KEY = KEY1/KEY2/KEY3,$

Keys can be discontinuous, for example:

KEY = KEY2/KEY5/KEY8,$

NOMAD Access Control
The following topics describe NOMAD access control:

• NOMAD security

• SET DBNAME command

In any computer system, it is important that data be secured from unauthorized access.
Both the operating system and the server provide security mechanisms to ensure that users
have access to only those objects for which they have authorization.

NOMAD Security
To allow authorized access to any allocated NOMAD data sets, the server should be running
with security turned on (for further details, see the iWay Server Configuration manual for
your platform).

SET DBNAME Command for NOMAD
In order to override the password in the Access File (FOCNMD), you need to set the
DBNAME server command. This feature is supplied so you can change passwords easily
without having to manually change the password in the Access File. Each database can
have multiple passwords with different security assigned to each password. This SET
command allows you to use your own password security against a particular database
without needing multiple Master and Access Files.

The DBNAME setting for NOMAD is invoked through a SET command within a stored
procedure.
iWay Data Adapter Administration for MVS and VM 12-15

NOMAD Access Control
Syntax How to Set a Password with DBNAME

CMS NMDIN SET DBNAME dbname DBPSWD password

where:

dbname

Is the name of the database.

password

Is the password.

To clear passwords for all databases that were set using the SET command, specify:

CMS NMDIN SET DBNAME CLEAR ALL

To clear a password set for a specific database, specify

CMS NMDIN SET DBNAME CLEAR dbname

where:

dbname

Is the name of the database.

Note:

• If you issue no settings, or all settings were cleared, the data adapter uses the password
specified for the DBNAME in the Access File.

• The explicit setting through the SET command takes precedence over the Access File
setting.

• The SET command overrides only the password. It does not override the DBNAME.
12-16 iWay Software

Getting Started in NOMAD
Creating File Descriptions With AUTONMD
AUTONMD automatically creates Master and Access Files from the NOMAD database. To run
the AUTONMD tool:

1. Execute the EDAAUTO EXEC, and select NOMAD.

2. When prompted, enter the name of the database.

3. Use XEDIT to display an SLIST of all the NOMAD Master Files in the schema. If you do not
want to create Master and Access Files for some of the NOMAD files, delete those
NOMAD files.

4. Save the list that remains after the deletions are made.

The Master and Access Files are then created. Their names (with file types of MASTER and
FOCNMD) are the same as the NOMAD Master Files, and their filemode will be A0.

For example, AUTONMD creates the following Master File and Access File from the NOMAD
Master File FDB:

• FDB MASTER

• FDB FOCNMD

Syntax How to Create Master and Access Files Descriptions from a NOMAD Schema

AUTONMD automatically creates Master and Access Files from the NOMAD schema.

For CMS, to run AUTONMD:

1. Execute the following from the CMS prompt:

AUTONMD <database name>

For example:

AUTONMD SAMPLE

The following is the SAMPLE NOMAD schema:

MASTER JOBTBL FILENAME=´NEWCMPNY´ FILETYPE=´JOBTBL´
 INSERT=KEYED(JOBCODE,A);
 ITEM JOBCODE AS A2;
 ITEM JOBNAME AS A20;
 ITEM HISAL(3) AS 99,999.99 INT=P15.2 INDEX AS FORMAT´9´ HEADING=
 ´HIGH:SALARY:FOR:POSITION´;
 ITEM LOSAL(3) AS 99,999.99 INT=P15.2 INDEX AS FORMAT´9´ HEADING=
 ´LOW:SALARY:FOR:POSITION´;
iWay Data Adapter Administration for MVS and VM 12-17

Creating File Descriptions With AUTONMD
MASTER DEPARTMENT FILENAME=´NEWCMPNY´ FILETYPE=´DEPARTM´
 INSERT=KEYED(DEPTCODE,A);
 ITEM DEPTCODE AS A3 ALIAS=DEPT HEADING=´DEPT:CODE´;
 ITEM DEPTNAME AS A12 ALIAS=DNAME HEADING=´DEPARTMENT´;
 ITEM LOCATION AS A12 ALIAS=LOC;

SEGMENT EQUIPMENT PARENT=DEPARTMENT FILETYPE=´EQUIPMEN´
 INSERT=KEYED(INVNUM,A);
 ITEM INVNUM AS 0999 INT=I4 HEADING=´INVENTORY:NUMBER´;
 ITEM TYPE AS A10;
 ITEM COST AS 99,999.99 INT=P15.2 LIMITS=(0.00:12,000.00);
 ITEM PURCHDATE AS DATE´MON, YYYY´ HEADING=´PURCHASE:DATE´;
 ITEM DEPR AS 9.99 INT=P15.2 HEADING=´DEPREC:IATION:FACTOR´;
 ITEM USEDBY AS A4 ALIAS=USER HEADING=´USED:BY´;
 DEFINE CURVAL AS 99,999.99 INT=P15.2 HEADING=´CURRENT:VALUE´ =
 COST-(&DATE-PURCHDATE)/365.25*(DEPR/100)*COST
;

MASTER PEOPLE FILENAME=´NEWCMPNY´ FILETYPE=´PEOPLE´
INSERT=KEYED(ID,A) ;
 ITEM ID AS A4 HEADING=´EMPLOYEE:NUMBER´;
 ITEM DEPTNUM AS MEMBER´DEPARTMENT´ AS A3;
 ITEM IDNAME AS NAME´F L´ INT=A16 HEADING=´EMPLOYEE:NAME´;
 ITEM SSN AS A11 MASK=´X99-99-9999´
HEADING=´SOCIAL:SECURITY:NUMBER´;
 ITEM VDAYS(12) MONTHLY SDATE ´01/01/81´ AS 999 INT=I4 INDEX AS
DATE
 HEADING=´VACATION:DAYS: TAKEN´;
 DEFINE JOBDATES AS DATE = INSTANCE(POSTDATE);

SEGMENT HISTORY PARENT=PEOPLE FILETYPE=´HISTORY´
INSERT=KEYED(POSTDATE,D) ;
 ITEM POSTDATE AS DATE HEADING=´DATE:OF NEW:POSITION´;
 ITEM SALARY AS 99,999.99 INT=P15.2 ENCIPHER;
 ITEM POSCODE AS MEMBER´JOBTBL´ AS A2;
 ITEM LEVEL AS 9 INT=I4 HEADING=´EXPERIENCE:LEVEL´ LIMITS=(1:3);
 DEFINE POSITION AS EXTRACT´JOBNAME FROM JOBTBL KEY POSCODE´;

An SLIST of all the NOMAD Master Files in the schema appears on the screen in XEDIT
mode. In this example, the SLIST contains:

JOBCTL
DEPARTMENT
PEOPLE
12-18 iWay Software

Getting Started in NOMAD
2. Delete all the files for which you do not want to create Master and Access Files and save
the list.

In this example, select only JOBCTL and DEPARTMENT. Select these files by deleting
PEOPLE from the SLIST.

The SAVE function causes AUTONMD to create Master and Access Files for all the files
left in the SLIST.

For this example, AUTONMD creates the following files:

JOBCTL MASTER
JOBCTL FOCNMD
DEPARTMENT MASTER
DEPARTMENT FOCNMD

AUTONMD creates one Master and Access File for each NOMAD Master.

For MVS, to run AUTONMD, you must be running under ISPF (Option 6 - Command Enter
TSO or Workstation Commands). The AUTONMD procedure invokes NOMAD2.

Your CLIST needs to include these two REXX procedures:

• AUTONMD

• NMDFOC

Also, the two following NOMAD procedures have to be accessible:

• OUTDICT

• OUTDICT0
iWay Data Adapter Administration for MVS and VM 12-19

Creating File Descriptions With AUTONMD
1. To run AUTONMD under MVS, execute the following command:

AUTONMD dbname [password]

where:

dbname

Is the name of the NOMAD schema.

password

Is the password, if password protected.

An SLIST of the NOMAD Masters will appear.

2. The only valid modification to this list is to delete the files not necessary to be
converted to Master and Access Files. Do not change the sequence of this file or add
anything to it.

3. Save the file. The NOMAD Masters on that list are generated into the syntax needed for
the Master and Access Files.

Note: These files should already be allocated as:

qualif.MASTER.DATA

qualif.ACCESS.DATA
12-20 iWay Software

CHAPTER 13

13.Getting Started in Oracle

Topics:

• Server Commands for Oracle

• Enabling Array Blocking for SELECT
and INSERT Requests for Oracle

• Oracle Access Control

• Creating Synonyms for Oracle

In order to use the Oracle Data Adapter, you must set
appropriate Oracle and platform-specific environment
variables prior to starting the server. To learn more about
setting these variables, refer to the Server Configuration
manual for your specific platform. Check with your System
or Server Administrator to see if these values have already
been set for you.
iWay Data Adapter Administration for MVS and VM 13-1

Server Commands for Oracle
Server Commands for Oracle
The following topic discusses server commands. You can set these commands in any of the
supported server profiles.

• PASSREC

• DBSPACE

• IXSPACE

• ORACHAR

• SPMAXPRM

• CONVERSION

• ORANUMBER

• OPTIMIZATION

• NONBLOCK

• ARRAY BLOCKING

• CLOB Activation

Syntax How to Use the SET PASSRECS Command for Oracle

You can use the SET PASSRECS command to obtain the number of rows affected by a
successfully executed SQL Passthru INSERT, UPDATE, or DELETE command.

ENGINE [SQLORA] SET PASSRECS {ON|OFF}

where:

SQLORA

Indicates the Oracle data source. You can omit this value if you previously issued the
SET SQLENGINE command.

ON

Provides the number of rows affected in the application program SCB count member
after the successful execution of an SQL Passthru INSERT, UPDATE, or DELETE
command. This is the default.

OFF

Provides no information after the successful execution of an SQL Passthru INSERT,
UPDATE, or DELETE command.

In addition, the data adapter updates the &RECORDS system variable with the number of
rows affected. You can access this variable using Dialogue Manager.
13-2 iWay Software

Getting Started in Oracle
Syntax How to Set DBSPACE for Oracle

You can use the SET DBSPACE command to designate a default tablespace for tables you
create.

For the duration of the session, the data adapter places these tables in the Oracle
tablespace that you identify with the SET DBSPACE command. If the SET DBSPACE
command is not used, Oracle uses the default tablespace for the connected user.

ENGINE SQLORA SET DBSPACE tablespacename

where:

SQLORA

Indicates the Oracle data source. You can omit this value if you previously issued the
SET SQLENGINE command.

tablespacename

Is a valid tablespace in the database.

Note: This command only affects CREATE FILE requests issued by Table Services. It does not
affect Passthru CREATE TABLE commands.

Syntax How to Set IXSPACE for Oracle

You can use the SET IXSPACE command to override the default parameters for the Oracle
index space implicitly created by the CREATE FILE and HOLD FORMAT SQLORA commands.

ENGINE SQLORA SET IXSPACE [index-spec]

where:

SQLORA

Indicates the Oracle data source. You can omit this value if you previously issued the
SET SQLENGINE command.

index-spec

Is the portion of the CREATE INDEX statement that defines the parameters for the index.
It can consist of up to 94 bytes of valid Oracle index space parameters. To reset the
index space parameters to their default values, issue the SET IXSPACE command with
no parameters.
iWay Data Adapter Administration for MVS and VM 13-3

Server Commands for Oracle
The long form of SQL Passthru syntax for commands exceeding one line is:

ENGINE SQLORA
SET IXSPACE index-spec
END

For example, to specify the NOSORT, NOLOGGING, and TABLESPACE portions of the CREATE
INDEX statement, enter the following commands:

ENGINE SQLORA
SET IXSPACE NOSORT NOLOGGING
TABLESPACE TEMP
END

Note: This command only affects CREATE INDEX requests issued by CREATE FILE and HOLD
FORMAT SQLORA commands. It does not affect Passthru CREATE INDEX commands, for
example:

ENGINE SQLORA SET IXSPACE TABLESPACE tablespace_name
TABLE FILE table_name
PRINT *
ON TABLE HOLD AS file_name FORMAT SQLORA
END

ORACHAR Setting
Special attention must be paid to CHAR and VARCHAR data types. When you compare a
CHAR data type column to a VARCHAR2 data type column, where the only difference is
additional trailing spaces in the CHAR data type column, Oracle treats the column values as
different.

The ORACHAR setting lets you specify which of the two data types are used for inserting,
updating, and retrieving data.

If you create the tables outside of the server, we recommend that you use either CHAR or
VARCHAR2 data types, but not both. If you create a table with both data types, you might
not be able to retrieve the data you inserted due to Oracle’s comparison mechanism. When
inserting data into VARCHAR2 columns outside of the server, do not insert any trailing
spaces.

If you use the server to generate Oracle tables and retrieve data, you will not encounter this
problem, since the data type being used will be either CHAR or VARCHAR2, depending
upon the ORACHAR setting.
13-4 iWay Software

Getting Started in Oracle
Syntax How to Use the ORACHAR Setting for Oracle

ENGINE SQLORA SET ORACHAR {FIX|VAR}

where:

FIX

Uses the CHAR data type.

VAR

Uses the VARCHAR2 data type. This is the default.

Syntax How to Use SPMAXPRM for Oracle

You can use the SET SPMAXPRM command to establish the maximum number of input
parameters that can be associated with any Oracle stored procedure.

ENGINE SQLORA SET SPMAXPRM nnn

where:

nnn

Is the maximum number of parameters that can be passed to any stored procedure
available to be run in this client session. The default is 256.

CONVERSION for Oracle
You can alter the length and scale of numeric columns returned by a SELECT request to a
server by creating different specifications in your logon profile or in a stored procedure. The
conversion settings are reflected in the Master File in the USAGE and ACTUAL formats of the
fields generated by CREATE SYNONYM. This affects how the fields are processed and
formatted by the server.
iWay Data Adapter Administration for MVS and VM 13-5

Server Commands for Oracle
Syntax How to Override Default Precision and Scale

ENGINE SQLORA SET CONVERSION RESET
ENGINE SQLORA SET CONVERSION format RESET
ENGINE SQLORA SET CONVERSION format [PRECISION nn [mm]]
ENGINE SQLORA SET CONVERSION format [PRECISION MAX]

where:

SQLORA

Indicates the Oracle data source. You can omit this value if you previously issued the
SET SQLENGINE command.

RESET

Returns any previously specified precision and scale values to the data adapter
defaults. If you specify RESET immediately following the SET CONVERSION command,
all data types return to the defaults. If you specify RESET following a particular data
type, only columns of that data type are reset.

format

Is any valid format supported by the data source. Possible values are:

INTEGER

Indicates that the command applies only to INTEGER and SMALLINT columns.

DECIMAL

Indicates that the command applies only to DECIMAL columns.

REAL

Indicates that the command applies only to single precision floating point
columns.

FLOAT

Indicates that the command applies only to double precision floating point
columns.

nn

Is the precision. Must be greater than 1 and less than or equal to the maximum
allowable value for the data type. (See description of MAX.)

mm

Is the scale. This is valid with DECIMAL, REAL, and FLOAT data types. If you do not
specify a value for scale, the current scale setting remains in effect. If the scale is not
required, you must set mm to 0 (zero).
13-6 iWay Software

Getting Started in Oracle
MAX

Sets the precision to the maximum allowable value for the indicated data type:

Note: When issuing the CREATE SYNONYM command while the CONVERSION command is
active in the profile, the Master File reflects the scale and length that is set by the
CONVERSION command.

However, when issuing a SELECT statement, the answer set description does not use the
information in the Master File. The length and scale used for the answer set description
depends on whether a CONVERSION command is in effect.

If a CONVERSION command is in effect, the answer set description uses the length and scale
that is set by the CONVERSION command.

If the CONVERSION command is not in effect, the answer set description uses the actual
length and scale of the data.

Example Setting the Precision Attribute for INTEGER and SMALLINT Fields

The following example shows how to set the precision attribute for all INTEGER and
SMALLINT fields to 7:

ENGINE SQLORA SET CONVERSION INTEGER PRECISION 7

Example Setting the Precision and Scale Attributes for DOUBLE PRECISION Fields

The following example shows how to set the precision attribute for all DOUBLE PRECISION
fields to 14 and the scale attribute to 3:

ENGINE SQLORA SET CONVERSION FLOAT PRECISION 14 3

Example Setting the Precision Attribute for INTEGER and SMALLINT Fields to the Default

The following example shows how to set the precision attribute for all INTEGER and
SMALLINT fields to the default:

ENGINE SQLORA SET CONVERSION INTEGER RESET

Data Type MAX Precision

INTEGER 11

DECIMAL 31

REAL 9

FLOAT 20
iWay Data Adapter Administration for MVS and VM 13-7

Server Commands for Oracle
Example Setting the Precision and Scale Attributes for All Fields to the Default

The following example shows how to set the precision and scale attributes for all fields to
the default:

ENGINE SQLORA SET CONVERSION RESET

Syntax How to Issue the ORANUMBER Setting

When working with the NUMBER data type where the precision is between 32 and 37, by
default the data type is mapped to the server data type double float (D), with a precision of
20 and a scale of 2.

When working with the NUMBER data type, where the precision is 38, by default the data
type is mapped to the server data type Integer (I) with a display length of 11.

To override the precision of the NUMBER data type, where the precision is between 32 and
38, use the ORANUMBER setting

ENGINE SQLORA SET ORANUMBER {COMP|DECIMAL}

where:

COMP

Is the NUMBER data type that will be mapped to the server data type double float (D),
with precision of 20 and a scale of 2. This is the default.

DECIMAL

Is the NUMBER data type that will be mapped to the server data type decimal (P), with a
precision of 33.

Syntax How to Optimize With Oracle

Optimization is the process by which the data adapter passes a join request to the relational
database management system (RDBMS) for processing. Data adapter optimization
improves response time by exploiting the RDBMS’ internal optimization techniques.

ENGINE SQLORA SET OPTIMIZATION {ON|OFF}

where:

ON

Instructs the data adapter to create SQL statements that take advantage of the RDBMS
join capabilities. The join is passed to the RDBMS. This is the default.

OFF

Instructs the data adapter to create SQL statements for simple data retrieval from each
table. Internal DML (data manipulation language) handles all aggregation, sorting, and
joining.
13-8 iWay Software

Getting Started in Oracle
Syntax How to Support NONBLOCK Calls for Oracle

The Oracle Data Adapter has the ability to issue calls in NONBLOCK mode. The default
behavior is BLOCK mode.

This feature allows the data adapter to react to a client request to cancel a query while the
data adapter is waiting on engine processing. This wait state usually occurs during SQL
parsing, before the first row of an answer set is ready for delivery to the data adapter.

SQL [SQLORA] SET NONBLOCK {0|n}

where:

SQLORA

Indicates the Oracle Data Adapter. You can omit this value if you issued the SET
SQLENGINE command previously.

n

Is a positive numeric number. A value of 0, the default, means that the data adapter will
operate in BLOCK mode. A value of 1 or greater activates the NONBLOCK calling and
specifies the time, in seconds, that the data adapter will wait between each time it
checks to see whether the client application has requested the cancellation of a query.
A value of 1 or 2 should be sufficient for normal operation.

Enabling Array Blocking for SELECT and INSERT Requests for Oracle
The Oracle Data Adapter supports array blocking of SELECT and INSERT requests. Array
blocking is a method which Oracle utilizes to buffer repeated executions of the same SQL
command (in this case FETCH or INSERT). It then executes the commands in bulk when the
buffer is full. This feature can substantially increase efficiency for certain requests.

The sole purpose of the FETCHSIZE and INSERTSIZE setting is to influence performance.
High values increase the efficiency of requests involving many rows, at the cost of higher
virtual storage requirements. Once values exceed 100, the increased efficiency they provide
is generally negligible.

Syntax How to Set FETCHSIZE for Oracle

The block size for SELECT request applies to TABLE FILE requests, MODIFY requests, MATCH
requests, and DIRECT SQL SELECT statements.

ENGINE SQLORA SET FETCHSIZE n

where:

n

Is the number of rows to be buffered and retrieved using blocked FETCH commands.
Accepted values are 1 to 5000. The default is 20.
iWay Data Adapter Administration for MVS and VM 13-9

Enabling Array Blocking for SELECT and INSERT Requests for Oracle
Syntax How to Set INSERTSIZE for Oracle

The block size for INSERT request applies to MODIFY INCLUDE requests and parameterized
DIRECT SQL INSERT statements.

ENGINE SQLORA SET INSERTSIZE n

where:

n

Is the number of rows to be buffered before the block of rows is actually transmitted to
the RDBMS. Accepted values are 1 to 5000. The default is 1.

Syntax How to Set Server CLOB Activation with Oracle

The default mapping for Oracle data types RAW and VARCHAR2 is the data type ALPHA. The
ALPHA data type maximum supported length is 4096 characters for TABLE/MODIFY and
32768 characters for API applications. It is now possible to perform SELECT, INSERT, and
UPDATE on columns with these data types without using the server data type CLOB.

To activate the support for the server data type CLOB, you must issue the following
command in one of the supported server profiles.

ENGINE [SQLORA] SET CONVERSION LONGCHAR TEXT

where:

SQLORA

Indicates the Oracle Data Adapter. You can omit this value if you previously issued the
SET SQLENGINE command.

TEXT

Activates server long character support. The default is ALPHA.

Note: For upward compatibility, if you use the SET CONVERSION LONGCHAR CLOB
command, the RAW and VARCHAR2 data types, when greater than 256, will be mapped to
the server data type CLOB.
13-10 iWay Software

Getting Started in Oracle
 Describing Oracle Data Sources
The following topics describe Oracle data sources.

• Master Files

• Access Files

Syntax How to Identify Master Files for Oracle

SUFFIX

Identifies the data adapter needed to interpret the request.

The syntax is

FILE[NAME]=file, SUFFIX=SQLORA [,$]

where:

file

Is the file name for the Master File. The file name should start with a letter and be
representative of the table or view contents. The actual file must have a .mas extension,
but the value for this attribute should not include the extension. The file name without
the .mas extension can consist of a maximum of eight alphanumeric characters.

SQLORA

Is the value for the Oracle Data Adapter.

Syntax How to Identify Access Files for Oracle

SERVER

Identifies the Oracle database server that the adapter has access to.

SERVER=tnsnames, $

Indicates access to a database server (specified with tnsnames).

SERVER=’’, $

Indicates access to a local database server.

SERVER=, $

Indicates access to a default database server.

For more information, refer to SET DEFAULT_CONNECTION Command for Oracle on page 13-
14.
iWay Data Adapter Administration for MVS and VM 13-11

Oracle Access Control
TABLENAME

Identifies the Oracle tablename. May include owner- (schema-) name and/or database
link name.

The syntax is

TABLENAME=[owner.]tablename@databaselink

For more information, refer to Oracle Support for DATABASE LINKs on page 13-17.

Oracle Access Control
The following topics describe Oracle access control.

• Oracle User Authentication.

• ENGINE SQLORA SET Command.

• Connecting to an Oracle Database Server.

• Using Oracle DATABASE LINKs.

On any computer system, it is important that data be secured from unauthorized access.
Both Oracle and the server provide security mechanisms to ensure that users have access to
only those objects for which they have authorization.

Oracle User Authentication
There are three methods by which users can be authenticated when connecting to Oracle:

• Explicit. The user ID and password are defined in the server global profile, edasprof.prf,
for all users.

• Database or Password Passthru. The user ID and password received from the client
application are passed to the Oracle RDBMS for authentication.

• Operating System. The server data access agent impersonates an operating system
user according to the server deployment mode. The agent process establishes a
connection to an Oracle server based on the impersonated operating system user
credentials.

ENGINE SQLORA SET Commands for Oracle
On a server, you establish which user ID and password are used when connecting to a
database by issuing the SET CONNECTION_ATTRIBUTES command. The first connection
string sets the default Oracle database server to be used. You can include SET commands in
a stored procedure or a server profile. The profile can be encrypted.
13-12 iWay Software

Getting Started in Oracle
Syntax How to Issue the SET CONNECTION_ATTRIBUTES Command for Oracle

The SET CONNECTION_ATTRIBUTES command allows you to declare one or more Oracle
database servers and the user IDs and passwords necessary to connect to them. The server
connects to an Oracle database server with the user ID and password that were declared
using the SET CONNECTION_ATTRIBUTES command. The connection takes place when the
first query is issued.

The syntax to access a remote Oracle database is

ENGINE SQLORA SET CONNECTION_ATTRIBUTES [tsname]/userid,password

where:

tnsname

Is the service name used as a connect descriptor to alias an Oracle RDBMS across the
network. If omitted, the local database is set as the default.

userid

Is the primary authorization ID by which you are known to Oracle.

password

Is the password associated with the primary authorization ID.

Note: The ENGINE SQLORA SET CONNECTION_ATTRIBUTES command allows a user to have
user IDs and passwords that are different on multiple databases. For example:

ENGINE SQLORA SET CONNECTION_ATTRIBUTES TNSNAMEA/EDAUSERA,EDAPWDA
ENGINE SQLORA SET CONNECTION_ATTRIBUTES /EDAUSERB,EDAPWDB

In this example, when the server connects to TNSNAMEA, it uses the user ID EDAUSERA and
the password EDAPWDA. The server connects to the local Oracle database server with the
user ID EDAUSERB and the password EDAPWDB.

When more than one SET CONNECTION_ATTRIBUTES command is included in the profile
(edasprof.prf), the first one will be the default.

Connecting to an Oracle Database Server
The server can connect to more than one Oracle database server at a time. To connect to an
Oracle database server, two methods are supported:

• Connection to a local Oracle database server.

• Connection to a remote Oracle database server.

Once connected, the Oracle DATABASE LINKs, if available, can be used to drill down further
into an Oracle database server network. For more information, see Oracle Support for
DATABASE LINKs on page 13-17.
iWay Data Adapter Administration for MVS and VM 13-13

Oracle Access Control
Using Local, Platform Dependent Connection Variables in Oracle
This method of connection is used when the Oracle database server and the server both
reside on the same machine. The server profile EDASPROF contains the following:

ENGINE SQLORA SET CONNECTION_ATTRIBUTES /userid,password

Access to a Remote Database Using Oracle Net8/SQL*NET Version 2
To access a remote Oracle database server using Oracle Net8/SQL*NET Version 2, the
following conditions must exist:

• The Oracle tnsnames file on the source machine must contain an entry pointing to the
target machine.

• The Net8/SQL*NET Version 2 product must be running (listening process) on the target
machine.

• The EDASPROF file must contain the following command:

ENGINE SQLORA SET CONNECTION_ATTRIBUTES tnsname/userid,password

An example of the tnsnames/userid,password follows:

solaris/scott,tiger

For more information on the creation and configuration of tnsnames, see the Oracle Net8/
SQL*NET Version 2 manual.

SET DEFAULT_CONNECTION Command for Oracle
The SET DEFAULT_CONNECTION command tells the server which Oracle database is the
default. If you do not issue this command, the tnsname value specified in the first SET
CONNECTION_ATTRIBUTES command is used. Both of these are superseded when the
keyword SERVER= is included in the Access File of the table specified in the current SQL
query.

To set the default Oracle database server, issue the following command

ENGINE SQLORA SET DEFAULT_CONNECTION [tnsname]

where:

tnsname

Is the service name used as a connect descriptor to act as an alias to an Oracle RDBMS
across the network. If omitted, the local database is set as the default.

Note: If you use ENGINE SQLORA SET DEFAULT_CONNECTION more than once, the
tnsname specified in the last statement is the active tnsname.
13-14 iWay Software

Getting Started in Oracle
Password Passthru Access for Oracle
Password Passthru applies when the server accepts a user ID and password upon client
connection that is not authenticated by the server but instead is passed through for
authentication by Oracle. To implement this type of authentication, start the server with
security turned off. The server allows the client connection, and then stores an encrypted
form of the client’s connection message to be used for connection to Oracle at anytime
during the lifetime of the server agent.

You must use the following format of the SET CONNECTION_ATTRIBUTES command in the
server profile

ENGINE SQLORA SET CONNECTION_ATTRIBUTES [tnsname]/

where:

tnsname

Is the service name used as a connect descriptor to alias an Oracle RDBMS across the
network. If omitted, then the local database is set as the default.

Note: No value after the slash (/) indicates the absence of USERID and PASSWORD. To
connect to the Oracle database server, the data adapter uses the USERID and PASSWORD
that were received upon client connection to the server.

Using Operating System Authentication for Oracle
To access Oracle using Operating System authentication, the server must be running as a
secure server and you must use the following format of the
SET CONNECTION_ATTRIBUTES command in the server profile

ENGINE SQLORA SET CONNECTION_ATTRIBUTES [tnsname]/,

where:

tnsname

Is the service name used as a connect descriptor to alias an Oracle RDBMS across the
network. If omitted, then the local database is set as the default.

Note: A comma (,) after the slash (/) indicates the absence of USERID and PASSWORD. The
data adapter uses the server authenticated USERID to connect to Oracle.

This corresponds to Oracle Trusted Mode connection, when the Oracle database user is
identified externally as OPS$ user, and should connect to Oracle with the following
SQL*Plus syntax:

"sqlplus /" or "SQL> CONN /"

Oracle users are authenticated by credentials supplied to the operating system.
iWay Data Adapter Administration for MVS and VM 13-15

Oracle Access Control
SET CONNECTION_ATTRIBUTES Command Syntax for the Server Releases
The following table lists the syntax for the SET CONNECTION_ATTRIBUTES command
according to the different server releases:

Server
Release

General Password
Passthru

Operating
System Authentication

4.2.1 SQL SQLORA SET
USER_userid/
password[@tnsname]

No SET USER
command in
profile
permitted.

SQL SQLORA SET USER/""

4.3.1 SQL SQLORA SET USER
userid/
password[@tnsname]

SQL SQLORA
SET USER
[@tnsname]

SQL SQLORA SET USER /
[@tnsname]

5.1.0 ENGINE SQLORA SET
CONNECTION_ATTRIBUTES
[tnsname]/
userid,password

ENGINE
SQLORA SET
CONNECTION_
ATTRIBUTES
[tnsname]/

ENGINE SQLORA SET
CONNECTION_ATTRIBUTES
[tnsname]/,
13-16 iWay Software

Getting Started in Oracle
Oracle Support for DATABASE LINKs
To access a remote Oracle database server using DATABASE LINKs created in the connected
Oracle database server, the following conditions must exist:

• The Oracle database server to which the remote server is connected must have valid
DATABASE LINKs defined.

• The TABLENAME= attribute in the Access File available to the server for the Oracle table
to be queried must have the following format

TABLENAME=[owner.]tablename@databaselink

where:

owner

Is the user ID by default. It can consist of a maximum of 30 characters. Oracle
prefers that the value be uppercase.

tablename

Is the name of the table or view. It can consist of a maximum of 30 characters.

databaselink

Is the valid DATABASE LINK name to be used in the currently connected Oracle
database server.

This format for TABLENAME can be placed in the Access File manually or using the
CREATE SYNONYM command. For example:

CREATE SYNONYM filename FOR owner.tablenameme@databaselink DBMS SQLORA

• The server profile EDASPROF or user profile includes:

ENGINE SQLORA SET CONNECTION_ATTRIBUTES userid/password

Once you have met the above conditions, all requests for the table will be processed on the
remote Oracle database server specified using the DATABASE LINK name. Using this
method is another way to access multiple remote servers in one SQL request.

For example, you have two databases, arhrisc and arhsol, created on two different Oracle
database servers. They are both remote from where the server is running. In the locally
connected Oracle database server, the following two DATABASE LINKs have been created:

CREATE DATABASE LINK edarisc USING ‘ibirisc’

and

CREATE DATABASE LINK edasol USING ‘solaris’

where ibirisc and solaris service names are valid entries in the tnsnames file and point to the
two different remote Oracle database servers.
iWay Data Adapter Administration for MVS and VM 13-17

Creating Synonyms for Oracle
In a remote procedure available to the server, include the syntax:

CREATE SYNONYM &1 FOR &2 DBMS SQLORA

Run the remote procedure from your client product using the following syntax (note that
syntax may vary depending on product):

rpname synonymname1 arhrisc@edarisc

Note that in the remote procedure, the value synonymname1 is substituted for &1 and the
value arhrisc@edarisc for &2.

Run the remote procedure a second time using the following syntax:

rpname synonymname2 arhsol@edasol

You can then run the following request from your client product:

SELECT T1.fld1,T1.fld2,T2.fld1,T2.fld2 FROM
 synonymname1 T1,synonymname2 T2
 WHERE T1.fld1=T2.fld1

Creating Synonyms for Oracle
The following topic describes how to use CREATE SYNONYM for Oracle.

Syntax How to Use the CREATE SYNONYM Command for Oracle

CREATE SYNONYM synonym FOR datasource DBMS eng [AT tnsname|AT ‘’][NOCOLS]
END

where:

synonym

Is an alias for the data source (maximum 64 characters for UNIX and Windows NT/2000
server platforms).

datasource

Is the fully qualified name for the physical data structure, such as
[databasename.]schema.tablename in Oracle, for example. See the Oracle
documentation for specific naming conventions.
13-18 iWay Software

Getting Started in Oracle
eng

Is the name of the data source's RDBMS installed on the server machine.

AT tnsname

Is the service_name from $Oracle_HOME/network/admin/tnsnames.ora used by the
TNS (Transparent Network Substrate) to specify the Oracle database server on which
the data source resides. When the server creates the synonym, this command becomes
the value for CONNECTION=TNSNAME, $ in the Access File. Use this option when
dynamically switching server access from one RDBMS server to another.

If, after creating the synonyms with this option, the RDBMS server's environment
changes (for example, if tables are moved to a different RDBMS server), you must either
create new synonyms or edit existing ones.

If this parameter is omitted, the server uses RDBMS specific settings in its environment.

AT ‘’

Puts CONNECTION=’’,$, instead of tnsname, in the Access File. A query against this
synonym will access the default Oracle database server to which you are currently
connected.

NOCOLS

Specifies optionally that the Master File created for the synonym should not contain
column information. If this option is used, the column data is retrieved dynamically
from the data source at run time of the SQL request.

END

Indicates the end of the command, and is required on a separate line in the stored
procedure.

Note: CREATE SYNONYM can span more than one line; however, a single element cagnnot
span more than one line.
iWay Data Adapter Administration for MVS and VM 13-19

Creating Synonyms for Oracle
13-20 iWay Software

CHAPTER 14

14.Getting Started in SAP/R3

Topics:

• Preparing the SAP R/3 Server
Environment

• Access Control

• Describing SAP R/3 Data Sources

• Tracing Options

The Adapter for SAP R/3 allows Data Migrator, ETL Manager,
WebFOCUS for SAP, and other applications to access SAP R/
3 data sources. The adapter converts data or application
requests into native SAP R/3 statements and returns
optimized answers sets to the requesting program.
iWay Data Adapter Administration for MVS and VM 14-1

Preparing the SAP R/3 Server Environment
Preparing the SAP R/3 Server Environment
In order to use the Data Adapter for SAP R/3, you need to set appropriate server commands
and environment variables. The following topics contain information about setting these
variables. You can include these commands in any of the supported server profiles.

Note: The default global profile, edasprof.prf, contains the following commands based on
the values supplied during the configuration process on the console.

Syntax How to Specify SAP R/3 Clients

Using SET CLIENT, you can instruct the Data Adapter for SAP R/3 to work on one or more R/
3 clients (MANDT). You must set this parameter either as an installation option or as a run-
time SET parameter.

SQL SQLSAP SET CLIENT client_string

where:

client_string

Indicates all of the R/3 clients. Individual clients are separated by semicolons, while
ranges are separated by a dash. For example:

SQLSAP SET CLIENT 010;020;025-030

Syntax How to Specify the SAP R/3 System

Using SET USER, you can instruct the Data Adapter for SAP R/3 to work on one R/3 system.
You must set this parameter either as an installation option or as a run-time SET parameter.

SQL SQLSAP SET SET CONNECTION_ATTRIBUTES user/password/system

where:

user

Is the R/3 user name. This is used only when SSF is enabled.

password

Is the password on R/3. This is used only when SSF is enabled.

system

Is the R/3 system name (must correspond to an entry in sapserv.cfg).

The following is a sample set of Data Adapter for SAP R/3 commands that can be included
in any of the supported server profiles:

SQL SQLSAP SET CLIENT 800
SQL SQLSAP SET SET CONNECTION_ATTRIBUTES user_id/password/system_id
14-2 iWay Software

Getting Started in SAP/R3
 Accessing Multiple SAP R/3 Systems
The data adapter can operate across multiple R/3 systems. In R/3, multiple clients share the
same metadata, and are identified by a client value. Normally, a given system has multiple
clients, and you may access one or more of them depending on your authorization. For
each system, the data adapter requires one R/3 logon consisting of client/user/password.
This logon must be:

• RFC-enabled.

• Authorized for all clients that you may access.

This unique logon manages all your requests and is referred to as ibilogon.

Note: The R/3 name for the client value is MANDT.

Access Control
On any computer system, it is important that data be secured from unauthorized access.
Both the operating system and the server provide security mechanisms to ensure that users
have access to only those objects for which they have authorization.

SNAPpack Reporters Release 3.08 installed and Metadata generated Master Files (.MAS) for
required SAP tables and logical databases (LDBs) needed for reporting.
iWay Data Adapter Administration for MVS and VM 14-3

Describing SAP R/3 Data Sources
 Describing SAP R/3 Data Sources
Create Master and Access Files using the Web Console. The Data Adapter for SAP R/3 suffix
is SQLSAP.

Note: These topics apply only to a Full-Function Server. They do not apply to a server
configured as a Relational Gateway or Hub Server.

SAP R/3 Master Files
The three types of Master File declarations are as follows:

Each declaration must begin on a separate line. A declaration consists of attribute-value
pairs separated by commas. A declaration can span as many lines as necessary, as long as
no single keyword-value pair spans two lines.

Do not use system or reserved words as names for files, segments, fields, or aliases.
Specifying a reserved word generates syntax errors.

Reference SAP R/3 File Attributes

Each Master File begins with a file declaration. The file declaration has two attributes:

Declaration Type Description

File Names the file and describes the type of data source.

Segment Identifies a table, file, view, or segment.

Field Describes the columns of the table or view.

FILENAME (FILE) Identifies the Master File.

SUFFIX Identifies the data adapter needed to interpret the
request.
14-4 iWay Software

Getting Started in SAP/R3
Syntax How to Identify Master Files for SAP R/3

FILE[NAME]=file, SUFFIX=SQLSAP [,$]

where:

file

Is the name for the Master File. The file name should start with a letter and be
representative of the table or view contents. The actual file must have a .mas extension,
but the value for this attribute should not include the extension. The file name without
the .mas extension can consist of a maximum of eight alphanumeric characters.

SQLSAP

Is the value for the Data Adapter for SAP R/3.

Reference SAP R/3 Segment Attributes

Each table described in a Master File requires a segment declaration. The segment
declaration consists of at least two attributes:

Syntax How to Specify a Segment

SEGNAME=segname, SEGTYPE=S0 [,$]

where:

segname

Is the segment name that serves as a link to the actual RDBMS table name. It may be
the same as the name chosen for FILENAME, the actual table name, or an arbitrary
name. It can consist of a maximum of 8 alphanumeric characters.

The SEGNAME value in the Master File must be the same as the SEGNAME value
specified in the Access File, where the TABLENAME portion of the segment declaration
contains the fully-qualified name of the table.

S0

Indicates that the RDBMS is responsible for both physical storage of rows and the
uniqueness of column values (if a unique index or constraint exists). It always has a
value of S0 (S zero).

SEGNAME Identifies one table.

SEGTYPE Identifies the physical storage of rows and the uniqueness
of column values.
iWay Data Adapter Administration for MVS and VM 14-5

Describing SAP R/3 Data Sources
Reference SAP R/3 Field Attributes

Each row in a table may consist of one or more columns. These columns are described in
the Master File as fields with the following primary field attributes:

Syntax How to Specify a Field

FIELD[NAME]=fieldname, [ALIAS=]sqlcolumn, [USAGE=]display_format,
 [ACTUAL=]storage_format [,MISSING={ON|OFF}], $

where:

fieldname

Is the name of the field. This value must be unique within the Master File. The name can
consist of a maximum of 48 alphanumeric characters including letters, digits, and
underscores. The name must begin with a letter. Special characters and embedded
blanks are not recommended. The order of field declarations in the Master File is
significant with regard to the specification of key columns. For more information, see
The Primary Key in SAP R/3 on page 14-9.

It is not necessary to describe all the columns of the RDBMS table in your Master File.

sqlcolumn

Is the full RDBMS column name; the data adapter uses it to generate SQL statements.
This value must comply with the naming conventions for RDBMS identifiers, where a
name should start with a letter and may be followed by any combination of letters,
digits, or underscores. Embedded spaces are not allowed.

FIELDNAME Identifies the name of a field.

ALIAS Identifies the full RDBMS column name.

USAGE Identifies how to display a field on reports.

ACTUAL Identifies the RDBMS data type and length in bytes for a
field.

MISSING Identifies whether a field supports null data.
14-6 iWay Software

Getting Started in SAP/R3
display_format

Is the display format. The value must include the field type and length, and may contain
edit options.

The data type of the display format must be identical to that of the ACTUAL format. For
example, a field with an alphanumeric USAGE data type must have an alphanumeric
ACTUAL data type.

Fields or columns with decimal or floating point data types must be described with the
correct scale (s) and precision (p). Scale is the number of positions to the right of the
decimal point. Precision is the total length of the field.

In SAP R/3, the total display length of the field or column includes the decimal point and
negative sign. In SQL, the total length of the field or column excludes the decimal point
and negative sign. For example, a column defined as DECIMAL(5,2) would have a
USAGE attribute of P7.2 to allow for the decimal point and a possible negative sign.

storage_format

Is the storage format of the RDBMS data type and length in bytes.

ON

Displays the character specified by the NODATA parameter for missing data. For more
information, see SAP R/3 MISSING Attribute on page 14-7.

OFF

Displays blanks or zeroes for fields having no value. This value is the default. For more
information, see SAP R/3 MISSING Attribute on page 14-7.

Reference SAP R/3 MISSING Attribute

In a table, a null value represents a missing or unknown value; it is not the same as a blank
or a zero. For example, a column specification that allows null values is used where a
column need not have a value in every row (such as a raise amount in a table containing
payroll data).

Note: The default NODATA character is a period.

A column in a table that allows null data does not need to include the NULL clause in its
table definition, since that is the default.

In the Master File for that table, the column that allows null data must be described with the
MISSING attribute value ON. The default for this attribute is OFF, which corresponds to the
NOT NULL attribute in the table definition.

If the column allows null data but the corresponding field in the Master File is described
with the MISSING attribute value OFF, null data values appear as zeroes or blanks.
iWay Data Adapter Administration for MVS and VM 14-7

Describing SAP R/3 Data Sources
SAP R/3 Access Files
Each Master File must have a corresponding Access File. The file name of the Access File
must be the same as that used for the Master File, but the extension will be .acx instead of
.mas. The Access File serves as a link between the server and the data source by providing
the means to associate a segment in the Master File with the table it describes. The Access
File minimally identifies the table and primary key. It may also indicate the logical sort order
of data.

Reference SAP R/3 Segment Declarations

The segment declaration in the Access File establishes the link between one segment of the
Master File and the actual RDBMS table or view. Attributes that constitute the segment
declaration are:

Syntax How to Specify a Segment in an Access File

SEGNAME=segname, TABLENAME=tablename, [KEYS={n|0},]
[KEYORDER={LOW|HIGH},] $

where:

segname

Is the same value as the SEGNAME value in the Master File.

tablename

Is the name of the table or view.

n

Is the number of columns that constitute the primary key. It can be a value from 0 to 16.
The default value is 0.

LOW

Indicates an ascending primary key logical sort order. This value is the default.

HIGH

Indicates a descending primary key logical sort order.

SEGNAME Identifies one table.

TABLENAME Identifies the table or view.

KEYS Identifies how many columns constitute the primary key.

KEYORDER Identifies the logical sort sequence of data by the primary
key.
14-8 iWay Software

Getting Started in SAP/R3
The Primary Key in SAP R/3
A table’s primary key consists of the column or combination of columns whose values
uniquely identify each row of the table. In the employee table, for example, every employee
is assigned a unique employee identification number. Each employee is represented by one
and only one row of the table, and is uniquely identified by that identification number.

The order of field declarations in the Master File is significant to the specification of key
columns. To define the primary key in a Master File, describe its component fields
immediately after the segment declaration. You can specify the remaining fields in any
order. In the Access File, the KEYS attribute completes the process of defining the primary
key.

To identify the primary key, the data adapter uses the number of columns (n) indicated by
the KEYS attribute in the Access File and the first n fields described in the Master File.

Typically, the primary key is supported by the creation of a unique index in the SQL
language to prevent the insertion of duplicate key values. The data adapter itself does not
require any index on the column(s) comprising the primary key (although a unique index is
certainly desirable for both data integrity and performance reasons).

Creating Virtual Fields in SAP R/3
You can create virtual fields in Master Files for reporting purposes, based on existing
information in a database. These might be new numerical fields computed from existing
fields, or new character strings translated from existing strings. You can also classify ranges
of data field values in named categories, or invoke your own functions in calculations.
Virtual fields are dynamically evaluated at execution time. Use the DEFINE statement to
accomplish these tasks.

Syntax How to Create Virtual Fields in Master Files

DEFINE fieldname[/format] [WITH fieldname]=expression ;$

where:

fieldname

Is a field name for the virtual field. It can consist of 1 to 48 characters. You must not
qualify the field name.

format

Provides the display format for the field and follows the rules for USAGE formats. This
operand is optional. If not specified, the default value is D12.2.

WITH fieldname

Must be coded when the expression is a constant. Any real field can be chosen from the
same segment the DEFINE is associated with.
iWay Data Adapter Administration for MVS and VM 14-9

Describing SAP R/3 Data Sources
expression

Can be either a mathematical or a logical statement. It can consist of constants,
database fields, and virtual fields. The expression must end with a semicolon followed
by a dollar sign (;$).

Place your DEFINE statements after all of the field descriptions in the segment. If you are
using the DESCRIPTION or TITLE attributes with virtual fields, you must place these
attributes on a separate line.

In the example that follows, the virtual field PROFIT is defined at the end of the segment
named BODY.

SEGMENT=BODY, SEGTYPE=S0 , PARENT=CARREC,$
FIELDNAME=BODYTYPE ,ALIAS=BODYTYPE ,A12,A12,$
FIELDNAME=DEALER_COST ,ALIAS=DEALER_COST ,D8, D8 ,$
FIELDNAME=RETAIL_COST ,ALIAS=RETAIL_COST ,D8, D8 ,$
DEFINE PROFIT/D8 = RETAIL_COST - DEALER_COST
 ;DESC=NET_COST, TITLE='NET,COST' ,$

As a result of this DEFINE statement, you can use PROFIT as a field name in reports. PROFIT
is treated as a field with a value equal to the value of RETAIL_COST minus DEALER_COST.

Note: Since the complete data source must be read to calculate virtual fields, screening
conditions on virtual fields may incur additional overhead.
14-10 iWay Software

Getting Started in SAP/R3
Table Support
The following table describes support for R/3 tables:

Data Type Support
The following table lists the R/3 data types and notes how they are mapped to data types in
the Master File.

R/3 Table Type Server Support

TRANSPARENT Supported.

CLUSTER TYPE 1 Type 1 (for example, BSEG). This type of cluster has
only one metadata definition (or set of fields), and
can be read using Open/SQL statements. The data
adapter supports this type of cluster.

CLUSTER TYPE 2 Type 2 (a repository, for example, Payroll in HR). In
the same physical file, R/3 stores metadata and
data. Open/SQL cannot be used to read these
clusters. They must be accessed by a specific ABAP
program, using R/3 internal macros. The data
adapter does not support this type of cluster.

CLUSTER TYPE 3 Type 3 (an in-core cluster, for example, Cost
Accounting Hierarchy). An R/3-specific program
must be written to access these clusters. The data
adapter does not support this type of cluster.

POOL Supported.

VIEW Supported if composed of TRANSPARENT, POOL, or
accessible CLUSTER tables.

R/3 Data
Type

R/3 Length R/3 Decimals Usage Actual

ACCP N 0 An An

CHAR N 0 An An

CLNT 3 0 A3 A3

CUKY N 0 An An

CURR n p P(n+2).p P(n+1)/2
iWay Data Adapter Administration for MVS and VM 14-11

Describing SAP R/3 Data Sources
* The date usage (DATS) is dynamically determined based on the value of the country
supplied in EDASTART. Therefore, date presentations vary by country.

DATS* 8 0 YYMD or DMYY A8

DEC n p P(n+2).p P(n+1)/2

FLTP n n P(n+2).p

INT1 3 0 I3 (limited to
127)

I1

INT2 5 0 I4 I2

INT3 5 0 I4 I3

INT4 10 0 P12.0 P6

LANG 1 0 A1 A1

LCHR N n not supported

LRAW N N not supported

NUMC N 0 An An

PREC N N not supported

QUAN N P P(n+2).p P(n+1)/2

RAW N n not supported

TIMS 6 0 A6 A6 (00:00:00)

VARC N 0 An (<=255) An (<=255)

UNIT 3 0 A3 A3

R/3 Data
Type

R/3 Length R/3 Decimals Usage Actual
14-12 iWay Software

Getting Started in SAP/R3
Open/SQL Support
The following table describes Open/SQL support for the Data Adapter for SAP R/3.

Command Server Support

Comments The Data Adapter for SAP R/3 dynamically generates
ABAP/4 programs containing SAP OpenSQL comments.

UP TO n ROWS Supported as a translation of a SET SELECT statement. This
command is supported in two ways:

• When a multiple SELECT statement is generated.
READLIMIT is translated in UP TO n ROWS for each
individual SELECT.

• When an internal counter guarantees that the
execution of all SELECT statements do not pass back
more than the number of READLIMIT records.

WHERE Supported as a translation of an IF or WHERE statement.

GROUP BY Not supported.

ORDER BY Not supported.

SINGLE Supported when JOIN TO is issued.

NULL The Data Adapter for SAP R/3 does not support the use of
the reserved word NULL as part of a WHERE clause.
Including NULL as part of a WHERE clause results in a
syntax error.
iWay Data Adapter Administration for MVS and VM 14-13

Tracing Options
 Tracing Options
Traces are enabled from the Administrative Console. Use Custom Option and select one of
the following

• SQLCALL

• SQLSAP/1

• SQLSAP/2

• SQLSAP/3

where:

level

Indicates the trace level. Currently supported trace levels are:

1. Generated ABAP/4 program.

2. Retrieved segments information.
14-14 iWay Software

CHAPTER 15

15.Getting Started in Teradata

Topics:

• Server Commands for Teradata

• Teradata Master Files

• Teradata Access Control

• The SET CONNECTION_ATTRIBUTES
Command for Teradata Data
Adapter

• Creating Synonyms for Teradata

• Thread Control Commands for
Teradata

In order to use the Teradata Data Adapter, you must set
appropriate Teradata and platform-specific environment
variables prior to starting the server. To learn more about
setting these variables, refer to the iWay Server
Configuration manual for your specific platform. Then check
with your System Administrator to see if these values have
already been set for you.
iWay Data Adapter Administration for MVS and VM 15-1

Server Commands for Teradata
Server Commands for Teradata
You can set these commands in any of the supported server profiles.

• ERRORTYPE

• COLNAME

Syntax How to Return Native Teradata Error Messages

Using SET ERRORTYPE, you can instruct the Teradata Data Adapter to return native Teradata
error messages for those error conditions that are reported by the DBMS. This feature can
be enabled both as an installation option and as a run time SET parameter.

ENGINE [SQLDBC] SET ERRORTYPE DBMS

where:

SQLDBC

Indicates the Teradata data source. You can omit this parameter value if you previously
issued the SET SQLENGINE command.

DBMS

Produces native Teradata error messages.

Syntax How to Control the Column Heading in a Request

ENGINE [SQLDBC] SET COLNAME {NAME|TITLE}

where:

SQLDBC

Indicates the Teradata data source. You can omit this parameter value if you previously
issued the SET SQLENGINE command.

NAME

If you specify the NAME option, the Teradata column name is used as the column
heading.

TITLE

If you specify the TITLE option, the name you provide is used as the column heading.
The TITLE option is the default.
15-2 iWay Software

Getting Started in Teradata
Teradata Master Files
The following section describes the syntax for identifying the Master File for Teradata.

Syntax How to Identify Master Files for Teradata

FILE[NAME]=file, SUFFIX=SQLDBC [,$]

where:

file

Is the file name for the Master File. The file name should start with a letter and be
representative of the table or view contents. The actual file must have a .mas extension,
but the value for this attribute should not include the extension. The file name without
the .mas extension can consist of a maximum of eight alphanumeric characters.

SUFFIX

Identifies the data adapter needed to interpret the request.

SQLDBC

Is the value for the Teradata Data Adapter.

Teradata Access Control
The following topic discusses the process of securing files by controlling user access to
data.

• DBCLOGON command on mainframe platforms.

• SET CONNECTION_ATTRIBUTES command

In any computer system, it is important that data be secured from unauthorized access.
Both Teradata and the server provide security mechanisms to ensure that users have access
to only those objects for which they have authorization.

Syntax How to Use the DBCLOGON Command for Teradata

You can include the SET DBCLOGON command in a server stored procedure or a server
profile. A SET command in a profile is executed automatically when you enter the server
environment. The profile can be encrypted.

During the installation of a server that has access to Teradata, the SET DBCLOGON
command is placed in the server profile EDASPROF. You can also include the SET
DBCLOGON command in a user profile, thereby providing different access authorization for
each user. Alternatively, the SQLDBC SET CONNECTION_ATTRIBUTES statement can be used
to declare the Teradata server connection and is discussed in the subsequent section.
iWay Data Adapter Administration for MVS and VM 15-3

The SET CONNECTION_ATTRIBUTES Command for Teradata Data Adapter
If you are using the Teradata Data Adapter on MVS, OS/390, or z/OS, the syntax is

SQL SQLDBC SET DBCLOGON TDPn/userid,password;

where:

TDPn

Is the Teradata Director Program number, where n is the number. You can code just the
number.

userid

Is the user ID to be used by the server-connected user for access to Teradata.

password

Is the password associated with the user ID.

The SET CONNECTION_ATTRIBUTES Command for Teradata Data Adapter
The SET CONNECTION_ATTRIBUTES command allows you to declare Teradata database
servers along with the user IDs and passwords connected to them. When the server
connects to a Teradata database server, it will use the valid user ID and password declared
by the command. The connection takes place when the first query is issued. This statement
is an alternative to the SET DBCLOGON command.

Syntax How to Issue the SET CONNECTION_ATTRIBUTES Command for Teradata

To be employed by the SET CONNECTION_ATTRIBUTES command, the user ID and
password must already exist within the Teradata database.

ENGINE SQLDBC SET CONNECTION_ATTRIBUTES TDPn/userid,password

where:

TDPn

Is the Teradata Director Program number, where n is the number. You can code just the
number.

userid

Is the valid authorization ID that belongs to an existing Teradata user.

password

Is the password associated with the valid authorization ID that belongs to an existing
Teradata user.

Note: If you use ENGINE SQLDBC SET CONNECTION_ATTRIBUTES more than once, the TDP
specified in the last statement will be the one in effect.
15-4 iWay Software

Getting Started in Teradata
Creating Synonyms for Teradata
The following topic discusses how to use CREATE SYNONYM for Teradata.

Syntax How to Use the CREATE SYNONYM Command for Teradata

CREATE SYNONYM synonym FOR datasource DBMS eng [NOCOLS]
CREATE SYNONYM synonym FOR datasource DBMS eng [NOCOLS]
END

where:

synonym

Is an alias for the data source (maximum 8 characters for MVS platforms).

datasource

Is the fully-qualified name for the physical data structure, such as
[database.]schema.tablename. See the Teradata documentation for specific naming
conventions.

eng

Is the name of the data source's database management system (DBMS) installed on the
server machine.

NOCOLS

Optionally specifies that the Master File created for the synonym should not contain
column information. If this option is used, the column data is retrieved dynamically
from the data source at the run time of the SQL request.

END

Indicates the end of the command, and is required on a separate line in the stored
procedure.

Note: The CREATE SYNONYM command can span more than one line. However, a single
element cannot span more than one line.
iWay Data Adapter Administration for MVS and VM 15-5

Thread Control Commands for Teradata
Thread Control Commands for Teradata
This topic explains how to set the scope of logical units of work using data adapters. This is
accomplished with the SET AUTODISCONNECT command.

Depending on how often the event occurs, the AUTODISCONNECT command may result in
considerable overhead. Most of this overhead is related to the operating system and the
data source rather than the server.

Syntax How to Set the Scope of Logical Units of Work for Teradata

ENGINE [SQLDBC] SET AUTODISCONNECT ON {FIN|COMMIT}

where:

SQLDBC

Indicates the Teradata data source. You can omit this parameter value if you previously
issued the SET SQLENGINE command.

FIN

Disconnects automatically only after the session has been terminated.This is the
default value.

COMMIT

Disconnects when a COMMIT or ROLLBACK is issued as a native SQL command. This
setting frees the thread of execution for use by other users. The disadvantage is the
cost of repeatedly connecting and acquiring a thread. Threads, once released, may not
be available when needed, so you may experience delays while your request waits for a
thread.
15-6 iWay Software

Index

Symbols

?, SET command 10-49

A

ACBs (Application Control Blocks) in IMS 8-8

ACCDATA attribute 10-36

ACCEPT attribute in IMS 8-52

ACCESS attribute 10-33

access control
for CA-IDMS/SQL 6-15
for InfoMan 9-9
for NOMAD 12-15
for Oracle 13-12
for SAP R/3 14-3
for Teradata 15-3

Access File attributes for ADABAS/C 3-5

Access Files 2-2, 2-7

Access Files for ADABAS/C 3-2, 3-7
creating 3-7

Access Files for CA-DATACOM 4-2, 4-5, 4-14, 4-19

Access Files for CA-IDMS 5-16, 5-32 to 5-33, 5-35,
5-57, 5-78

Access Files for CA-IDMS/SQL 6-11

Access Files for DB2 7-9

Access Files for IMS 8-60, 8-96 to 8-101

Access Files for InfoMan 9-8

Access Files for NOMAD 12-13
creating 12-17

Access Files for Oracle 13-11

Access Files for SAP R/3 14-8

ACCESS library 10-6

access methods in IMS 8-4

Access segment declarations in CA-IDMS 5-32

access to data in CA-DATACOM 4-24

access to data in CA-IDMS 5-64

access to data in CA-IDMS/SQL 6-15

access to data in DB2 7-10

access to data in IMS 8-76, 8-80

access to data in InfoMan 9-9

access to data in NOMAD 12-15

access to data in SAP R/3 14-3

access to data in Teradata 15-3

access to servers in Oracle 13-12

accessing ADABAS/C 3-2

ACCOUNT attribute 10-28

ACCOUNTPASS attribute 10-28

ACTUAL attribute 2-4, 10-25

ACTUAL attribute in CA-IDMS 5-21, 5-23

ACTUAL attribute in CA-IDMS/SQL 6-9

ACTUAL attribute in IMS 8-41

ACTUAL attribute in SAP R/3 14-6

ACTUAL format in IMS 8-16

ACTUAL parameter 5-23

ADABAS/C Data Adapter
Access Files for 3-2
Master Files for 3-2

AFD 10-27
ACCDATA attribute 10-36
iWay Data Adapter Administration for MVS and VM I-1

Index
ACCESS attribute 10-32 to 10-33
account declarations 10-28
ACCOUNTattribute 10-28
ACCOUNTPASS attribute 10-28
ALIAS attribute 10-34
ATTRIBUTE attribute 10-36
Concepts 10-11, 10-13, 10-16, 10-20
field attributes 10-34
FILE attribute 10-30
IFAMCHNL attribute 10-28
IXFLD attribute 10-30, 10-32
KEYFLD attribute 10-30, 10-32
multi-field embedded join 10-31 to 10-32
MVS

Members of ACCESS library 10-6
naming conventions 10-27
OCCURS declaration 10-32, 10-34
PASS attribute 10-30
RECTVAL attribute 10-32
RECTYPE attribute 10-32
rules for declarations 10-27
segment attributes 10-29
SEGNAME attribute 10-30
suffix operators 10-35
Summary of mapping rules 10-37
TYPE attribute 10-35

Aggregation
Null data 10-47

alias
long names 10-24, 10-34
name maximum 10-34 to 10-35

ALIAS attribute 2-4, 10-24, 10-34

ALIAS attribute in CA-DATACOM 4-13

ALIAS attribute in CA-IDMS 5-21 to 5-22

ALIAS attribute in CA-IDMS/SQL 6-9

ALIAS attribute in IMS 8-16, 8-40

ALIAS attribute in SAP R/3 14-6

alias name maximum 10-23

aliases in InfoMan 9-22

ALL_TAB_COLUMNS system catalog table 2-4

answer sets 12-4 to 12-5

Application Control Blocks (ACBs) in IMS 8-8

APT (Automatic Passthru) 1-3

area sweep method of record retrieval 5-73

array blocking in Oracle 13-9

arrays in NOMAD 12-10

ASF (Automatic System Facility) 5-15

ASF records 5-15

ATTRIBUTE attribute 10-36

attributes 2-13

authentication in Oracle 13-15

AUTO DATACOM facility 4-25

AUTOaction command 7-15

AUTOCLOSE command 7-16

AUTODISCONNECT command in CA-IDMS/SQL
6-15

AUTODISCONNECT command in DB2 7-15, 7-17

AUTODISCONNECT command in Teradata 15-6

AUTOIDMS facility 5-78, 5-94, 5-97
functions 5-83
installing 5-97
performance 5-97
starting 5-79

AUTOIDMS parameter log file 5-94

AUTOIMAN procedure 9-3, 9-10 to 9-12, 9-16

Automatic Passthru (APT) 1-3

Automatic System Facility (ASF) 5-15

AUTONMD tool 12-5, 12-17
I-2 iWay Software

Index
B

Bachman diagrams 5-3

bill-of-materials structure 5-10

BLOB support in DB2 7-8

BLOCK mode in Oracle 13-9

Buffers
Interface

Changing FTBL size 10-47
Changing maximum size 10-46

MODEL 204
LIBUFF 10-46
LOBUFF 10-46

buffers
IFAMBS 10-32
OCCURS segment 10-32

buffers in IMS 8-82 to 8-83

C

CA-DATACOM Data Adapter 4-1 to 4-2
Access Files for 4-2, 4-14, 4-19
commands 4-8
Master Files for 4-2, 4-11 to 4-12, 4-18
security 4-16, 4-24 to 4-25

CA-DATACOM DATA DICTIONARY 4-2, 4-21

CA-DATACOM files 4-21

CAF (Call Attachment Facility) 7-16

CA-IDMS Data Adapter 5-1 to 5-2, 5-15, 5-97
Access Files for 5-16, 5-32 to 5-33, 5-35, 5-57,

5-62, 5-78
commands 5-35, 5-69
Master Files for 5-14, 5-18 to 5-19, 5-52, 5-61,

5-64, 5-78, 5-96
security 5-64

CA-IDMS/SQL Data Adapter 6-1
Access Files for 6-11
commands 6-2

Master Files for 6-7
security 6-15

CALC field method of record retrieval 5-70

CALC fields 5-13 to 5-14, 5-25

CALC-based retrieval 5-75

Call Attachment Facility (CAF) 7-16

CARTESIAN command 12-5

Cartesian product answer sets 12-4 to 12-5

CLIENT parameter 14-2

CLOB support in DB2 7-7

CLOB support in Oracle 13-10

CLUSTER TYPE 1 table type 14-11

CLUSTER TYPE 2 table type 14-11

CLUSTER TYPE 3 table type 14-11

CMS
Qualifier 10-45

COLNAME command in Teradata 15-2

column headings in CA-DATACOM 4-5

column names in Teradata 15-2

column titles 2-16
renaming 2-16 to 2-17

columns 2-14
documenting 2-14 to 2-15

columns in Oracle 13-5

comments in Access Files 3-7

comments in Master Files 3-7

commit and rollback in IMS 8-95

common member structure 5-8, 5-14

common owner structure 5-7, 5-14

concatenated keys in CA-DATACOM 4-20
iWay Data Adapter Administration for MVS and VM I-3

Index
concatenated keys in IMS 8-4, 8-8

CONCATNAME record 8-32

configuring data adapters in InfoMan 9-4

CONNECT command in CA-IDMS/SQL 6-5

CONNECT command in DB2 7-12 to 7-13

CONNECT TO command 7-11

connection strategies in DB2 7-17

connection support in DB2 7-11

connection variables in Oracle 13-14

CONNECTION_ATTRIBUTES command in Oracle
13-12 to 13-13, 13-15 to 13-16

CONNECTION_ATTRIBUTES command in SAP R/3
14-2

CONNECTION_ATTRIBUTES command in Teradata
15-4

control blocks in IMS 8-5

CONVERSION command in DB2 7-6

CONVERSION command in Oracle 13-5 to 13-8,
13-10

counter field 10-26

CRAM channel 10-28

CREATE SYNONYM command in ADABAS/C 3-7

CREATE SYNONYM command in DB2 7-14

CREATE SYNONYM command in Oracle 13-17 to
13-18

CREATE SYNONYM command in Teradata 15-5

creating Access Files and Master Files in NOMAD
12-17

creating file descriptions in CA-DATACOM 4-25

creating Master Files in InfoMan 9-13, 9-16

creating virtual fields 2-9 to 2-10

CRFILE attribute 10-21

CRFILE keyword 5-20

cross-century dates 2-10 to 2-13

Cross-referenced files 10-13, 10-18

cross-referenced files
in AFD 10-30

cross-referenced files in CA-IDMS 5-20

cross-referencing data sources for CA-DATACOM
4-20

CURRENT DEGREE command 7-2 to 7-3

CURRENT PACKAGESET command 7-13

CURRENT SCHEMA command 6-5 to 6-6

current settings in CA-IDMS 5-35

Cursor Stability setting 6-6

Customer Support Service
Information required 1-vi

D

data adapters 1-1 to 1-3, 1-5

data management 2-1

Data Manipulation Language (DML) 1-3, 5-2

data sources 2-2 to 2-3
describing 2-2

data sources for CA-DATACOM 4-2 to 4-3, 4-5, 4-10,
4-17

cross-referencing 4-20

data sources for CA-IDMS 5-2, 5-18

data sources for CA-IDMS/SQL 6-7

data sources for DB2 7-9
I-4 iWay Software

Index
data sources for IMS 8-26
accessing 8-9, 8-11
describing 8-12 to 8-14, 8-16, 8-19, 8-21 to

8-22, 8-28, 8-35, 8-61 to 8-63, 8-68
joining 8-25 to 8-27

data sources for InfoMan 9-11

data sources for NOMAD 12-3, 12-5

data sources for Oracle 13-11, 13-14

data structure diagrams 5-3

data structures 5-7 to 5-10, 5-12

data type support for SAP R/3 14-11

data types in Oracle 13-4

database descriptions (DBDs) in IMS 8-5, 8-7, 8-61

database key (DBKEY) method of record retrieval
5-70

database keys in CA-IDMS 5-25

DATABASE LINKs 13-17

database security 9-9

DATACOM Data Adapter 4-1 to 4-2
Access Files for 4-2, 4-19
commands 4-8
Master Files for 4-2, 4-11, 4-18
security 4-24 to 4-25

DATACOM DATA DICTIONARY 4-2, 4-21

DATACOM files 4-21

dataset defaults in CA-IDMS 5-97

DB2 aliases 7-2

DB2 application plans 7-5 to 7-6

DB2 Data Adapter 7-1
Access Files for 7-9
commands 7-2, 7-4 to 7-6, 7-15
Master Files for 7-9
security 7-10

DB2 environment variables 7-1

DB2 error messages 7-4

DBCLOGON command 15-3

DBDGEN statement 8-5

DBDs (database descriptions) in IMS 8-5, 8-7, 8-61

DBKEY (database key) method of record retrieval
5-70

DBNAME command 12-15 to 12-16

DBNAME parameter 5-35

DBSPACE attribute in CA-IDMS/SQL 6-11

DBSPACE command in CA-IDMS/SQL 6-3

DBSPACE command in DB2 7-3

DBSPACE command in Oracle 13-3

DCB parameters 10-6

DEDB method 8-4

default connections in CA-IDMS/SQL 6-5

default parameters in CA-IDMS/SQL 6-3

default parameters in Oracle 13-3

DEFCENT parameter 2-11

DEFINE command 2-9 to 2-10, 2-17

DELETE command in IMS 8-94

descendant segment retrieval 5-73

DESCRIPTION attribute 2-13 to 2-15

DI21PART data source 8-62

Dialogue Manager variables 7-17

DICTNAME parameter 5-35

Direct Passthru (DPT) 1-3

discontiguous key support 5-95

Displaying defaults
iWay Data Adapter Administration for MVS and VM I-5

Index
SET ? query 10-49

DL/I calls in IMS 8-9 to 8-10

DML (Data Manipulation Language) 1-3, 5-2

DML access 5-2

DML record types 5-36

documenting columns 2-14 to 2-15

documenting tables 2-14

DPT (Direct Passthru) 1-3

Dummy segments 10-19

dump format in IMS 8-79

Dynamic join 10-15
/See also JOIN 10-15

dynamic joins 10-14

E

editing options in InfoMan 9-10

element logical records for CA-DATACOM 4-16

elements 4-3

Embedded join
Advantages of 10-16
Concepts 10-16, 10-20
Joining unrelated files 10-19
OCCURS segment 10-12

embedded join
concatenated keys 10-31
multi-field 10-31 to 10-32
OCCURS segment 10-25 to 10-26
PARENT attribute 10-22
SEGTYPE values 10-22
specifying in AFD 10-30, 10-32

Embedded joins
Concepts 10-11, 10-13

EMPDB01 data source 8-68

EMPDB02 data source 8-68

EMPDB03 data source 8-68

EMPSCHM schema 5-42, 5-51
LRF view 5-58

EMPSS01 schema 5-52, 5-57

EMPSS02 schema 5-58, 5-62 to 5-63

Environmental commands
FTBL -PRNG 10-47
M204ACCNT -PRNG 10-45
M204PASS -PRNG 10-45
MAXMBUFF -PRNG 10-46
MISSING -PRNG 10-47
READWOL -PRNG 10-48
SET ? query 10-49
SINGLETHREAD -PRNG 10-48
Syntax form -PRNG 10-45

Error handling
Changing buffer capacity 10-46

error handling
retrieval of occurrences 10-32

error messages in CA-IDMS/SQL 6-2

error messages in DB2 7-4

error messages in Teradata 15-2

error processing in InfoMan 9-8

ERRORTYPE command in CA-IDMS/SQL 6-2

ERRORTYPE command in DB2 7-4 to 7-5

ERRORTYPE command in Teradata 15-2

extended FOCPSB attributes 8-31

EXTSEC parameter 9-9

F

FDEFCENT setting 2-12 to 2-13

FETCHSIZE command 13-9
I-6 iWay Software

Index
Field
Common 10-13
Element

Mapping of 10-9
Multiply-occurring 10-12
Shared key 10-13

field
name maximum 10-23
naming conventions in MFD 10-23
qualifiers 10-23
suffix operators 10-35
types of key 10-35

field attributes 2-4, 10-22, 10-25, 10-34

field attributes in ADABAS/C 3-4

field attributes in CA-DATACOM 4-13

field attributes in CA-IDMS 5-20 to 5-21, 5-92

field attributes in CA-IDMS/SQL 6-9

field attributes in IMS 8-35
declaring 8-39

field attributes in SAP R/3 14-6

field declarations 2-3 to 2-4

field declarations in IMS 8-35

field declarations in SAP R/3 14-6

field descriptions in InfoMan 9-23

field formats
FOCUS 10-24
MODEL204 10-25

field name maximum 10-23

field name support in CA-IDMS 5-95

field names in IMS 8-40

field names in InfoMan 9-22

Field Selection screen 9-23

field sensitivity in IMS 8-8

FIELDNAME attribute 2-4, 10-23

FIELDNAME attribute in CA-IDMS 5-21

FIELDNAME attribute in CA-IDMS/SQL 6-9

FIELDNAME attribute in IMS 8-16, 8-40

FIELDNAME attribute in SAP R/3 14-6

fields
multiply-occurring 10-25 to 10-26
suffix operators 10-35

fields in IMS 8-16
describing 8-16
redefining 8-59

fields in InfoMan 9-23
confirming selections 9-25
selecting 9-24 to 9-25

File
MODEL 204

Mapping of 10-9

FILE attribute
AFD 10-30
MFD 10-21

file attributes 10-20 to 10-21

file attributes in CA-IDMS 5-91

file attributes in CA-IDMS/SQL 6-8

file declarations 2-3

file declarations in CA-DATACOM 4-11

file declarations in CA-IDMS/SQL 6-7

file declarations in IMS 8-35

file declarations in NOMAD 12-6

file declarations in SAP R/3 14-4 to 14-5

file description attributes and values in CA-IDMS
5-90

file descriptions in CA-DATACOM 4-25
iWay Data Adapter Administration for MVS and VM I-7

Index
file descriptions in CA-IDMS 5-42, 5-78, 5-93
creating 5-78

file descriptions in NOMAD 12-17

FILENAME attribute 2-3

FILENAME attribute in CA-IDMS/SQL 6-8

FILENAME attribute in IMS 8-35

files in CA-IDMS 5-64

FOCM204
Ddname 10-6

FOCPSB attributes in IMS 8-29, 8-31

FOCPSB file in IMS 8-11, 8-28 to 8-29, 8-31, 8-34,
8-61

FOCUS
Concepts 10-37
field qualifiers 10-23
Installation requirement 10-5
Mapping elements 10-9, 10-11
OCCURS virtual construct 10-25, 10-32, 10-34
OCCURSvirtual construct 10-26
View 10-13

Advantages of 10-16

FSTRACE file in IMS 8-79

FTBL, SET command -PRNG 10-47

FYRTHRESH setting 2-12 to 2-13

G

Get calls in IMS 8-10

Get Next (GN) calls in IMS 8-10

Get Unique (GU) calls in IMS 8-10

GETIT command 4-8

GN (Get Next) calls in IMS 8-10

Group
MODEL 204

Definition of 10-9

GROUP attribute 5-25

group field support in CA-IDMS 5-95

group fields in IMS 8-43

GROUP/CALC fields 5-14

GROUP/SPF fields 5-14

GSETL command 4-8

GU (Get Unique) calls in IMS 8-10

H

HDAM data sources 8-80

HDAM method 8-4

header logical records for CA-DATACOM 4-15

header records in IMS 8-29

help messages 2-18 to 2-19

help screens in InfoMan 9-13

HELPMESSAGE attribute 2-13, 2-18 to 2-19

HIDAM data sources 8-80

HIDAM method 8-4

hierarchical structure in IMS 8-2

hierarchical structure in NOMAD 12-2

HIGHVALUE attribute 8-31

HISAM method 8-4

HKY suffix in IMS 8-16

HLI calls
Lock management 10-48
MISSING tests 10-47

HSAM method 8-4
I-8 iWay Software

Index
I

ibilogon parameters 14-3

identifying Master Files for CA-DATACOM 4-11

IDMS Data Adapter 5-1

IDMS index method of record retrieval 5-71 to 5-72

IDMS/SQL Data Adapter 6-1

IFAMBS buffer 10-32

IFAMCHNL attribute 10-28

IGNORE= parameter 9-8

IMANCONF configuration file 9-10

IMS Data Adapter 8-1, 8-92
Access Files for 8-60, 8-96 to 8-101
commands 8-77
joining data sources 8-25 to 8-26
limitations 8-92
Master Files for 8-12 to 8-14, 8-16, 8-19, 8-21 to

8-22, 8-35, 8-39 to 8-41, 8-43, 8-50,
8-52 to 8-55, 8-59, 8-61, 8-96 to 8-101

optimizing 8-78
screening conditions and 8-82, 8-84
security 8-76
SQL and 8-79, 8-92

IMS suffix 8-16

index declarations in CA-IDMS 5-32

index-based relationships in CA-IDMS 5-13 to 5-14

indexed-based retrieval 5-76

InfoMan Data Adapter 9-1 to 9-3, 9-5 to 9-6, 9-13
Access Files for 9-8
configuring 9-4
Master Files for 9-11, 9-13
requirements 9-4
security 9-9

Inquiry PIDT names 9-13, 9-16
specifying 9-18

INSERTSIZE command 13-9 to 13-10

Installation
MVS 10-5

ACCESS library 10-6
MASTER library 10-6
Overview 10-5
Possible errors 10-8
Run-time requirements 10-8
Security 10-8

Prerequisites
Software 10-5

integrated index fields in CA-IDMS 5-14

integrated indexes in CA-IDMS 5-41

intra-record structures in CA-IDMS 5-27

isolation levels 6-6

IXFLD attribute 10-16, 10-30, 10-32

IXSPACE command in CA-IDMS/SQL 6-3

IXSPACE command in DB2 7-4

IXSPACE setting 13-3

J

JCL files 9-4 to 9-5

JOIN
Dynamic

Concepts 10-15
embedded 10-30

join requests in Oracle 13-8

join structures in IMS 8-25 to 8-27

joining data sources in IMS 8-25 to 8-26
iWay Data Adapter Administration for MVS and VM I-9

Index
K

key feedback area 8-8

key fields
types 10-35

key fields in IMS 8-3

key sensitivity in IMS 8-8

KEY suffix in IMS 8-16

keyed through linkage (KL) segments 5-26

keyed through linkage unique (KLU) segments
5-26

KEYFLD attribute 10-16, 10-30, 10-32

KEYORDER attribute 2-7

KEYORDER attribute in CA-IDMS/SQL 6-11

KEYORDER attribute in SAP R/3 14-8

KEYS attribute 2-7

KEYS attribute in CA-IDMS/SQL 6-11

KEYS attribute in SAP R/3 14-8

keywords in index declarations 5-41

keywords in segment declarations 5-36, 5-39

KL (keyed through linkage) segments 5-26

KLU (keyed through linkage unique) segments
5-26

L

Libraries
ACCESS.DATA 10-6
DCB parameters 10-6
MASTER.DATA 10-6

LIBUFF 10-46

limitations
field name maximum 10-23
field naming conventions 10-23
file naming conventions 10-21
IFAMBS buffer formula 10-32
qualified field names and OCCURS 10-23

limits in IMS 8-35

LOBUFF 10-46

Lock management 10-48

locked records 6-6

Logical Record Facility (LRF) 5-95

Logical record type
Definition of 10-9
Joining unrelated types 10-19
RECTYPE attribute 10-11, 10-15, 10-18

logical record type
RECTYPE attribute 10-32

logical records (LRs) for CA-DATACOM 4-15 to 4-16

logical records (LRs) for CA-IDMS 5-15 to 5-16

logical relationships in CA-IDMS 5-13

logical relationships in IMS 8-3, 8-26

logical units of work (LUW) in CA-IDMS/SQL 6-15

logical units of work (LUW) in DB2 7-15

logical units of work (LUW) in IMS 8-95

logical units of work (LUW) in Teradata 15-6

logon for SAP R/3 14-3

logon ID for DB2 7-10
setting 7-11

loop structures 5-12

LOWVALUE attribute 8-31

LRF (Logical Record Facility) 5-2, 5-95

LRF access 5-2
I-10 iWay Software

Index
LRF record types 5-39

LRF records in CA-IDMS 5-62

LRF view of CA-IDMS Access Files 5-62

LRF view of CA-IDMS Master Files 5-61

LRF-based retrieval 5-76

LRs (logical records) for CA-DATACOM 4-15 to 4-16

LRs (Logical Records) for CA-IDMS 5-15 to 5-16

LUW (logical units of work) in CA-IDMS/SQL 6-15

LUW (logical units of work) in DB2 7-15

LUW (logical units of work) in IMS 8-95

LUW (logical units of work) in Teradata 15-6

M

M204ACCNT, SET command 10-45

M204IN SET
See SET 10-45

M204PASS, SET command 10-45

many-to-many relationships in CA-IDMS 5-3, 5-10

Mapping concepts 10-37
Joining files 10-13, 10-20
Joining unrelated files 10-19
Mapping elements 10-9, 10-11
Summary of mapping rules 10-37

mapping for CA-DATACOM 4-2

mapping IMS elements 8-11 to 8-12, 8-25

Master File attributes 2-13 to 2-16, 2-18

Master Files 2-2 to 2-4, 2-6 to 2-7, 2-12

Master Files for ADABAS/C 3-2
creating 3-7

Master Files for CA-DATACOM 4-2, 4-5, 4-11 to
4-12, 4-18

Master Files for CA-IDMS 5-14, 5-18 to 5-19, 5-52,
5-78, 5-96

Master Files for CA-IDMS/SQL 6-7

Master Files for DB2 7-9

Master Files for IMS 8-12 to 8-14, 8-16, 8-19, 8-21 to
8-22, 8-35, 8-39 to 8-41, 8-43, 8-50, 8-52 to 8-55,
8-59, 8-61, 8-96 to 8-101

Master Files for InfoMan 9-11
creating 9-13, 9-16

Master Files for NOMAD 12-17
creating 12-17

Master Files for NOMAD data sources 12-6

Master Files for Oracle 13-11

Master Files for SAP R/3 14-4 to 14-7

Master Files for Teradata 15-3

MASTER library 10-6

MAXMBUFF, SET command 10-46

member owner structure 5-7, 5-14

MFD 10-26
ACTUAL attribute 10-25
ALIAS attribute 10-24
Concepts 10-11, 10-13, 10-16, 10-20
CRFILE attribute 10-21
Dummy segment 10-19
field attributes 10-22
field naming conventions 10-23
FIELDNAME attribute 10-23
FILE attribute 10-21
file attributes 10-20 to 10-21
Mapping elements 10-9, 10-11
multi-segment 10-22
MVS Members of MASTER library 10-6
naming conventions 10-21
OCCURS attribute 10-12, 10-25 to 10-26
PARENT attribute 10-22
Root segment 10-16
iWay Data Adapter Administration for MVS and VM I-11

Index
Rules for declarations 10-20 (MF continued)
segment attributes 10-21
SEGNAME attribute 10-22
SEGTYPE attribute 10-22
SUFFIX attribute 10-21
Summary of mapping rules 10-37
USAGE attribute 10-24

MISSING attribute 2-4, 2-6

MISSING attribute in CA-IDMS/SQL 6-9, 6-11

MISSING attribute in NOMAD 12-9

MISSING attribute in SAP R/3 14-6 to 14-7

missing records in CA-IDMS 5-68 to 5-69

missing values in CA-IDMS/SQL 6-11

missing values in tables 14-7

MISSING, SET command 10-47

MODEL 204
Buffers 10-46
Concepts 10-37
File description 10-9
Group of files 10-9
Installation requirement 10-5
Mapping elements 10-9, 10-11
Thread management 10-48

MODEL204
field formats 10-25
file security 10-30
IFAMBS buffer 10-32
types of key fields 10-35

MSO
TSO qualifier 10-45

multi-field embedded join 10-31 to 10-32

multi-field joins
embedded 10-31 to 10-32

multi-files in CA-DATACOM 4-17 to 4-19

multi-member structure 5-9

multiple configuration files in InfoMan 9-10

multiple data sources in CA-DATACOM 4-17

multiple fields 4-20

multiple record types in IMS 8-52

multiple SSAs in IMS 8-84

multiply occurring fields 10-26

multiply-occurring fields 10-25

multi-segment MFD 10-22

multi-segment requests in IMS 8-86, 8-88

MVS
Installation 10-5

ACCESS library 10-6
MASTER library 10-6
Possible errors 10-8
Run-time requirements 10-8
Security 10-8

Qualifier 10-45

N

naming conventions for fields 10-23

navigating screens in InfoMan 9-13

nested repeating fields in CA-IDMS 5-27, 5-95

network records 5-69

network relationships in CA-IDMS 5-14

NODATA character 10-47

NOMAD Data Adapter 12-1
Access Files for 12-13
mapping to 12-2
Master Files for 12-2, 12-6 to 12-7, 12-10
security 12-15

NONBLOCK command in Oracle 13-9

NONBLOCK mode in Oracle 13-9

non-relational data adapters 1-5
I-12 iWay Software

Index
non-unique segment 10-22

non-unique segments in CA-IDMS 5-69

null data in CA-IDMS/SQL 6-11

null values 2-6

null values in SAP R/3 14-7

number of rows in CA-IDMS/SQL 6-4

number of rows in DB2 7-5
obtaining 7-5

O

OCCURS
Segment

Mapping of 10-12

OCCURS attribute 10-25 to 10-26
field qualifier limitation 10-23

OCCURS attribute in CA-IDMS 5-20

OCCURS attribute in IMS 8-21

OCCURS attribute in NOMAD 12-10

OCCURS segment 10-25 to 10-26
AFD declaration 10-32, 10-34
controlling retrieval 10-33
ORDER field 10-26
syntax 10-25

OCCURS segment in CA-IDMS 5-27

OCCURS segment in IMS 8-53 to 8-58

one-to-many relationships in CA-IDMS 5-3

online help messages 2-18 to 2-19

Open/SQL support for SAP R/3 14-13

operating system authentication in Oracle 13-15

OPTIMIZATION command 13-8

optimization in IMS 8-78 to 8-79, 8-81 to 8-82

optimization in Oracle 13-8

ORACHAR command 13-4 to 13-5

Oracle Data Adapter 13-1
Access Files for 13-11
authenticating users 13-12, 13-15
commands 13-2, 13-12
Master Files for 13-11
security 13-12

Oracle database servers 13-13
connecting to 13-13 to 13-14, 13-17

Oracle Net8/SQL*NET 13-14

ORANUMBER command 13-8

ORDER field 5-31, 8-55, 10-26

ORDER field in NOMAD 12-12

overriding PICA parameters 9-8

owner member structure 5-14

P

parameters for SET command 2-10
CLIENT 14-2
DEFCENT 2-11
ERRORTYPE 6-2
IXSPACE 6-3
PASSRECS 6-4
USER 14-2
YRTHRESH 2-11

parameters for SET command in Oracle 13-2, 13-15
CONNECTION_ATTRIBUTES 13-13, 13-16
CONVERSION 13-5
DBSPACE 13-3
FETCHSIZE 13-9
INSERTSIZE 13-10
NONBLOCK 13-9
OPTIMIZATION 13-8
ORACHAR 13-4 to 13-5
ORANUMBER 13-8
PASSRECS 13-2
SERVER 13-14
SPMAXPRM 13-5
iWay Data Adapter Administration for MVS and VM I-13

Index
parameters in Oracle 13-5

PARENT attribute 10-22

PARENT attribute in CA-DATACOM 4-18

PARENT attribute in CA-IDMS 5-20

PARENT attribute in IMS 8-14, 8-38

parent segments 8-8

parent-child relationships in CA-IDMS 5-6, 5-13 to
5-14

implementing with SELECT clauses 5-17

parent-child relationships in IMS 8-2

partial-key requests in IMS 8-86 to 8-88

partitioned data sources in IMS 8-31
describing 8-31

partitioned datasets (PDS) 8-34

PASS attribute 10-30

PASSRECS command in CA-IDMS/SQL 6-4

PASSRECS command in DB2 7-5

PASSRECS command in Oracle 13-2

passwords in NOMAD 12-15 to 12-16

PATDB01 data source 8-63

PCB records in IMS 8-29

PCBNAME value 8-11

PCBs (Program Communication Blocks) in IMS 8-6
to 8-7, 8-11

concatenating 8-32

PCBTYPE value 8-11

PDS (partitioned datasets) 8-34

performance in Oracle 13-9

PF keys for AUTOIDMS facility 5-83

PF keys in InfoMan 9-18, 9-22 to 9-23

PICA (Programming Interface Communications
Area) 9-6

PICA parameters 9-6, 9-8

PICACLSN parameter 9-6

PICADBID parameter 9-6

PICASESS parameter 9-6

PICATINT parameter 9-6

PICAUSRN parameter 9-6

PIDT (Program Interface Data Table) 9-11, 9-13,
9-20

PIDT Selection Library 9-10

PIDT Selection Panel 9-16, 9-18

PIDT strings 9-22
locating 9-23

PLAN command 7-5 to 7-6

POOL table type 14-11

POSITION attribute 5-20, 5-30

precision values in Oracle 13-6
changing 13-6, 13-8
setting 13-7 to 13-8

primary ID for DB2 7-10

primary keys in CA-IDMS/SQL 6-14

primary keys in IMS 8-3

primary keys in SAP R/3 14-9

privilege class names for InfoMan 9-7

processing requests 2-2

PROCOPT=K setting 8-8

PROCSEQ parameter 8-22, 8-46 to 8-47

Program Communication Blocks (PCBs) in IMS 8-6
to 8-7, 8-11

concatenating 8-32
I-14 iWay Software

Index
Program Interface Data Table (PIDT) 9-11, 9-13,
9-20

Program Specification Blocks (PSBs) in IMS 8-6 to
8-7, 8-11, 8-60 to 8-61, 8-77

Programming Interface Communications Area (PI-
CA) 9-6

PSBs (Program Specification Blocks) in IMS 8-6 to
8-7, 8-11, 8-60 to 8-61, 8-77

Q

qualified SSAs 8-9, 8-81

qualifiers 10-23

queries in Oracle 13-9

Querying defaults
SET ? query 10-49

R

read/write access 7-8

READWOL, SET command 10-48

record retrieval commands for CA-DATACOM 4-8

Record type field 10-11, 10-15

record types in CA-IDMS 5-3, 5-6 to 5-10, 5-12 to
5-13

record types in IMS 8-52

Record/Set Selection Screen 5-89 to 5-90

records in CA-DATACOM 4-3
retrieving 4-8

records in CA-IDMS 5-64, 5-69
retrieving 5-65 to 5-66, 5-68 to 5-76
selecting 5-86

records in CA-IDMS/SQL 6-4

records in DB2 7-5
obtaining number of rows 7-5

records in IMS 8-29
identifying 8-29
retrieving 8-46 to 8-47, 8-89
selecting 8-79, 8-81 to 8-83, 8-86 to 8-88

RECTVAL attribute 10-32

RECTYPE attribute 10-15, 10-32

RECTYPE attribute in IMS 8-19, 8-50, 8-52

RECTYPE field in IMS 8-19, 8-50, 8-52

relational data adapters 1-5

REMARKS attribute 2-13 to 2-14

remote data servers
accessing 13-14, 13-17

remote field descriptions in CA-IDMS 5-26

REMOTECAT command 7-2

repeating fields in CA-IDMS 5-30 to 5-31

repeating fields in IMS 8-21, 8-53 to 8-58

repeating group support in CA-IDMS 5-95

repeating groups in CA-IDMS 5-27

Reporting
Common path for screening 10-19
Common path for sort operations 10-19
Locks 10-48

requests 2-2

response time in Oracle 13-8

Retrieval
Common path requirement 10-19
Disabling locks 10-48
Record locks 10-48

retrieval
OCCURS segment 10-33

Retrieval PIDT Name Confirmation panel 9-25
iWay Data Adapter Administration for MVS and VM I-15

Index
Retrieval PIDT names 9-13, 9-16, 9-20
confirming 9-24
specifying 9-18

retrieval subtrees in CA-IDMS 5-64 to 5-65, 5-69

retrieving files in CA-IDMS 5-64

retrieving records in CA-DATACOM 4-8

retrieving records in CA-IDMS 5-64 to 5-66, 5-68 to
5-76

Rfind feature in InfoMan 9-23

Root Record Selection Screen 5-86 to 5-87

root segments in ADABAS/C 3-3

root segments in IMS 8-86, 8-98 to 8-100

rows in Oracle 13-2
retrieving 13-9

Run-time requirements
MVS 10-8

S

SAP R/3 Data Adatper
Access Files for 14-8
commands 14-2
data type support 14-11
Master Files for 14-4 to 14-7
Open/SQL support 14-13
security 14-3
table support 14-11

scale values in Oracle 13-5
changing 13-6
setting 13-7 to 13-8

schemas in CA-IDMS/SQL 6-5 to 6-6

Screening
Common retrieval path 10-19

screening conditions in CA-IDMS 5-66, 5-68

screening conditions in IMS 8-78, 8-82, 8-84

search fields in IMS 8-4

searching in InfoMan 9-18, 9-22 to 9-23

secondary indexes in IMS 8-3, 8-22, 8-46 to 8-47,
8-89

Security
Alternatives to encrypting 10-45
FOCUS view 10-16

security
MODEL204 10-28, 10-30

Security Synchronization Feature (SSF) 14-3

SEGM statement 8-5

Segment
Data element

Mapping of 10-10
Dummy 10-19
OCCURS

See OCCURSsegment 10-12
Parent 10-16
Root 10-16

segment attributes 2-7
AFD 10-29, 10-34
MFD 10-21 to 10-22
OCCURS 10-25 to 10-26, 10-32, 10-34

segment attributes in CA-DATACOM 4-12

segment attributes in CA-IDMS 5-19, 5-91

segment attributes in CA-IDMS/SQL 6-9

segment attributes in IMS 8-36

segment attributes in SAP R/3 14-5

segment declarations 2-3 to 2-4, 2-7

segment declarations in Access Files for SAP R/3
14-8

segment declarations in CA-DATACOM 4-12

segment declarations in CA-IDMS/SQL 6-11

segment declarations in NOMAD 12-7
I-16 iWay Software

Index
segment instances 12-2

segment keywords 12-14

segment logical records for CA-DATACOM 4-15

segment search arguments (SSAs) in IMS 8-9, 8-81
to 8-84, 8-86 to 8-88

segments in ADABAS/C 3-3

segments in CA-IDMS 5-3

segments in IMS 8-2, 8-14, 8-19, 8-50, 8-52, 8-59,
8-93, 8-97 to 8-101

identifying 8-3
limits 8-35
repeating fields 8-21, 8-53 to 8-55
retrieving 8-3 to 8-4

segments in SAP R/3 14-5
declaring 14-5

SEGNAME attribute 2-4, 2-7, 10-22, 10-30

SEGNAME attribute in CA-DATACOM 4-12

SEGNAME attribute in CA-IDMS 5-19

SEGNAME attribute in CA-IDMS/SQL 6-9, 6-11

SEGNAME attribute in IMS 8-14, 8-36

SEGNAME attribute in NOMAD 12-7

SEGNAME attribute in SAP R/3 14-5, 14-8

SEGTYPE attribute 2-4, 10-22

SEGTYPE attribute in CA-DATACOM 4-12

SEGTYPE attribute in CA-IDMS 5-19

SEGTYPE attribute in CA-IDMS/SQL 6-9

SEGTYPE attribute in IMS 8-14, 8-36 to 8-37

SEGTYPE attribute in NOMAD 12-7

SEGTYPE attribute in SAP R/3 14-5

SELECT clause 5-17

selecting fields in InfoMan 9-25

selecting records in CA-IDMS 5-86

selecting records in IMS 8-79, 8-83, 8-86 to 8-88

selection criteria 4-8

SELFR call 4-8

SELFR command 4-8

SELNR command 4-8

SEQFIELD parameter 5-72

sequence fields in IMS 8-3

sequence of data 12-12

Sequential Processing Facility (SPF) 5-41

SERVER command in Oracle 13-14

server security in InfoMan 9-9

session control in CA-IDMS/SQL 6-5

session IDs for InfoMan 9-6 to 9-7

SET
? 10-49
FTBL -PRNG 10-47
M204ACCNT -PRNG 10-45
M204PASS -PRNG 10-45
MAXMBUFF -PRNG 10-46
MISSING -PRNG 10-47
READWOL -PRNG 10-48
SINGLETHREAD -PRNG 10-48

SET command in IMS 8-77

SET parameters 2-10
YRTHRESH 2-11

set-based relationships 5-3, 5-6

set-based retrieval 5-74

setting passwords in NOMAD 12-16

short paths in CA-IDMS 5-68 to 5-69

SINGLETHREAD, SET command 10-48

smart names in CA-IDMS 5-96
iWay Data Adapter Administration for MVS and VM I-17

Index
SPF (Sequential Processing Facility) 5-41

SPF indexes 5-25, 5-63

SPMAXPRM command 13-5

SQL commands in Oracle 13-9

SQL join structures in IMS 8-27

SQL requests 1-3

SQL requests in IMS 8-79, 8-93 to 8-95

SQL Translator 1-3

SQLCARTES command 12-5

SQLDBC commands 15-4

SSA buffer 8-82 to 8-83

SSAs (segment search arguments) in IMS 8-9, 8-81
to 8-84, 8-86 to 8-88

SSF (Security Synchronization Feature) 14-3

status codes in IMS 8-8

stored procedures in Oracle
passing parameters to 13-5

structured words 9-3

subschema declarations 5-32
keywords 5-33 to 5-34

subtree requirements in IMS 8-12

subtrees 12-2

SUFFIX attribute 2-3, 10-21

SUFFIX attribute in ADABAS/C 3-2

SUFFIX attribute in CA-DATACOM 4-11

SUFFIX attribute in CA-IDMS/SQL 6-8

SUFFIX attribute in IMS 8-35

SUFFIX attribute in Oracle 13-11

SUFFIX attribute in Teradata 15-3

suffix operators 10-35

S-words 9-3

symbolic pointers in IMS 8-4

Syntax summary
Interface commands -PRNG 10-45

T

table names in CA-IDMS/SQL 6-5

table support for SAP R/3 14-11

TABLENAME attribute 2-7

TABLENAME attribute in CA-IDMS/SQL 6-11

TABLENAME attribute in SAP R/3 14-8

tables 2-2, 2-14
documenting 2-14

tables in CA-IDMS/SQL 6-3
storing 6-3

tablespaces in Oracle 13-3

temporary fields 2-9

Teradata Data Adapter 15-1
commands 15-2, 15-4, 15-6
Master Files for 15-3
security 15-3

thread control commands in CA-IDMS/SQL 6-15

thread control commands in DB2 7-15 to 7-16

thread control commands in Teradata 15-6

Threads
Controlling modes 10-48
MODEL 204 10-48
SET SINGLETHREAD 10-48

TITLE attribute 2-13, 2-16 to 2-17

TRACE attribute 4-15

trace levels 14-14

traces in IMS 8-79, 8-83
I-18 iWay Software

Index
tracing in InfoMan 9-3

tracing in SAP R/3 14-14

TRANSACTION command in CA-IDMS/SQL 6-6

Transient Read setting 6-6

TRANSPARENT table type 14-11

TSO
Qualifier 10-45

TYPE attribute 10-35

U

unique segment 10-22

unique segments in CA-IDMS 5-65, 5-68

unqualified SSAs 8-9

UPDATE command in IMS 8-95

URT (User Requirements Table) 4-24

USAGE attribute 2-4, 10-24

USAGE attribute in CA-IDMS 5-21, 5-23

USAGE attribute in CA-IDMS/SQL 6-9

USAGE attribute in IMS 8-41

USAGE attribute in SAP R/3 14-6

USAGE format in CA-IDMS 5-96

USAGE format in IMS 8-16

user authentication in Oracle 13-15

USER command in Oracle 13-12 to 13-13, 13-15 to
13-16

USER command in SAP R/3 14-2

USER command in Teradata 15-4

user IDs for InfoMan 9-6 to 9-7

User Requirements Table (URT) 4-24

USERTABLE attribute 4-15

V

variables 7-17

View
FOCUS 10-13, 10-16

VIEW table type 14-11

Virtual construct
Dummy segment 10-19
OCCURS segment 10-12

virtual construct
OCCURS segment 10-25 to 10-26

virtual fields 2-9
creating 2-9 to 2-10

virtual fields in SAP R/3 14-9
creating 14-9

virtual segment
OCCURS 10-25 to 10-26

W

WHERE criteria in IMS 8-81, 8-84

WHERE phrase in IMS 8-92

X

XDFLD statement 8-22

Y

YRTHRESH command 2-11

YRTHRESH parameter 2-11
iWay Data Adapter Administration for MVS and VM I-19

Index
I-20 iWay Software

1.Reader Comments
In an ongoing effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections.
Identify specific pages where applicable. You can contact us through the following methods:

Name:___

Company:__

Address:___

Telephone:____________________________________Date:_____________________________________

E-mail:___

Comments:

Mail: Documentation Services - Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
iWay Data Adapter Administration for MVS and VM DN3501103.0103
Version 5.2.0

1.Reader Comments
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
iWay Data Adapter Administration for MVS and VM DN3501103.0103
Version 5.2.0

	Preface
	Contents
	1. Data Adapters
	Functions of a Data Adapter
	How a Data Adapter Works
	Processing SQL Requests

	Relational and Non-Relational Data Adapters
	Supported Data Sources

	2. Data Management
	Describing Data Sources
	Processing Requests
	Master File
	MISSING Attribute

	Access File
	Primary Key
	Creating Virtual Fields
	Cross-Century Dates
	Cross-Century Dates SET Commands
	Master File Syntax

	Additional Master File Attributes
	Documenting a Table
	Documenting a Column
	Supplying an Alternate Column Title
	Specifying an Online Help Message

	3. Getting Started in ADABAS
	Mapping Concepts in ADABAS
	Describing ADABAS Data Sources
	Master File Attributes
	Field Attributes
	Access File Attributes
	Comments in the Master and Access Files

	CREATE SYNONYM Command for ADABAS
	NEW Create Synonym Setting for Superdescriptors
	Describing Metadata
	New Logic for Selection Criteria

	ISN Support
	ISN for Insert

	GFBID Support
	Using Predict With CREATE SYNONYM

	4. Getting Started in CA-DATACOM/DB
	DATACOM Operating Environment
	DATACOM Mapping Concepts
	DATACOM Structures
	Mapping DATACOM Structures in the Server
	How the Data Adapter Creates DATACOM Call Syntax
	GSETL and GETIT in DATACOM
	SELFR and SELNR in DATACOM

	Describing DATACOM Data Sources
	DATACOM Master Files
	DATACOM File Attributes
	DATACOM Segment Attributes
	DATACOM Field Attributes
	DATACOM Access Files
	DATACOM Header Logical Record
	DATACOM Segment Logical Record
	DATACOM Element Logical Record Security

	Describing Multi-File Structures
	Multi-File DATACOM Master File
	Multi-File DATACOM Access File
	Using Multiple Fields to Cross-Reference Data Sources in DATACOM

	Sample DATACOM DATADICTIONARY Master and Access Files
	DATACOM DATADICTIONARY PERSON-MASTER Indented Report
	DATADICTIONARY Element Field Report for EMDTA
	PERSON Master File and Access File in DATACOM
	DATACOM DATADICTIONARY PAYROLL-MASTER Indented Report
	DATADICTIONARY Element Field Report for PAYROLL
	PAYROLL Master File and Access File in DATACOM
	PERSPAY Master File and Access File in DATACOM

	DATACOM Access Control
	User Requirements Table (URT) in DATACOM
	DATACOM Element-Level Security

	Creating File Descriptions With AUTO DATACOM

	5. Getting Started in CA-IDMS
	CA-IDMS Operating Environments
	CA-IDMS Mapping Concepts
	CA-IDMS Network Concepts
	CA-IDMS Set-Based Relationships
	Simple Set in CA-IDMS
	Common Owner in CA-IDMS
	Common Member in CA-IDMS
	Multi-Member in CA-IDMS
	Bill-of-Materials in CA-IDMS
	Loop Structures in CA-IDMS
	CALC-Based and Index-Based Relationships in CA-IDMS

	Summary of Network Relationships in CA-IDMS
	Logical Record Facility Concepts in CA-IDMS
	LRF Records as Descendants in CA-IDMS

	Describing CA-IDMS Data Sources
	CA-IDMS Master Files
	CA-IDMS File Attributes
	CA-IDMS Segment Attributes
	SEGNAME in CA-IDMS
	SEGTYPE in CA-IDMS
	PARENT in CA-IDMS
	CRFILE (Cross-referenced File) in CA-IDMS
	OCCURS and POSITION in CA-IDMS
	CA-IDMS Field Attributes
	FIELDNAME in CA-IDMS
	ALIAS in CA-IDMS
	USAGE in CA-IDMS
	ACTUAL in CA-IDMS
	GROUP Fields in CA-IDMS
	The IDMS Database Key
	CA-IDMS Remote Descriptions
	Defining Intra-Record Structures With the OCCURS Segment
	Describing the Repeating Group to the Server in CA-IDMS
	POSITION Attribute in CA-IDMS
	ORDER Field in CA-IDMS

	CA-IDMS Access Files
	CA-IDMS Access File Syntax
	Subschema Declaration Keywords in CA-IDMS
	CV Mode Only

	Overriding DBNAME and DICTNAME in IDMS
	Segment Declaration Keywords for Network Record Types in CA-IDMS
	Segment Declaration Keywords for LRF Records in CA-IDMS
	Index Declaration Keywords for Network Record Types in CA-IDMS

	CA-IDMS Sample File Descriptions
	CA-IDMS Schema: EMPSCHM
	CA-IDMS Network Subschema: EMPSS01
	CA-IDMS Master File for Network
	CA-IDMS Access File for Network
	CA-IDMS LRF Subschema: EMPSS02
	CA-IDMS Master File for LRF
	CA-IDMS Access File for LRF
	Sample of a Partial LRF Record in CA-IDMS
	SPF Indexes in CA-IDMS

	CA-IDMS Access Control
	CA-IDMS File Retrieval
	CA-IDMS Retrieval Subtree
	Retrieval Sequence With Unique Segments in CA-IDMS
	The Effects of Screening Conditions in CA-IDMS
	Screening Conditions With Unique Segments in CA-IDMS
	Short Paths in CA-IDMS
	Short Paths in Unique Descendants in CA-IDMS
	Short Paths in Non-Unique Descendants in CA-IDMS
	CA-IDMS Record Retrieval
	Entry Segment Retrieval of Network Records in CA-IDMS
	Retrieval by IDMS Database Key
	Retrieval by CALC Field in CA-IDMS
	Retrieval by IDMS Index
	SEQFIELD Parameter in CA-IDMS
	Retrieval by Area Sweep in CA-IDMS
	CA-IDMS Descendant Segment Retrieval of Network Records
	CA-IDMS Set-Based Retrieval
	CALC-Based Retrieval in CA-IDMS
	Index-Based Retrieval in CA-IDMS
	LRF Record Retrieval in CA-IDMS
	Creating File Descriptions With AUTOIDMS in CA-IDMS
	Generated Descriptions in CA-IDMS
	File and Segment Attributes in CA-IDMS
	Field Attributes in CA-IDMS
	Changes to the Generated Descriptions in CA-IDMS
	Search Order for the Parameter Log File in CA-IDMS
	Enhancements to AUTOIDMS in CA-IDMS
	Discontiguous Key Support in CA-IDMS
	Logical Record Facility (LRF) Support in CA-IDMS
	Extended Field Name Support in CA-IDMS
	Group Field Support in CA-IDMS
	Additional Repeating Group Support in CA-IDMS
	USAGE Format Enhancements in CA-IDMS
	“Smart” Segment, Field, and Alias Names in CA-IDMS
	Documentation in the Master File in CA-IDMS
	Enhancements in CA-IDMS
	Improved Performance in CA-IDMS
	CA-IDMS Installation
	Changing Initial Data Set Defaults in CA-IDMS

	6. Getting Started in CA-IDMS/SQL
	Server Commands in CA-IDMS/SQL
	CA-IDMS/SQL Session Control: The CONNECT Command
	IDMS/SQL Session Control: Other Session Commands

	CURRENT SCHEMA in CA-IDMS/SQL
	TRANSACTION in CA-IDMS/SQL
	Describing CA-IDMS/SQL Data Sources
	CA-IDMS/SQL Master Files
	MISSING Attribute in CA-IDMS/SQL
	CA-IDMS/SQL Access Files
	The Primary Key in CA-IDMS/SQL

	CA-IDMS/SQL Access Control

	7. Getting Started in DB2
	Server Commands for DB2
	Enabling DB2 Aliases
	Supporting Parallel Processing
	Designating a Default Storage Space for Tables
	Overriding Default Parameters for the DB2 Index Space
	Returning Native DB2 Error Messages
	Obtaining the Number of Rows Affected By an SQL Passthru Command
	Identifying the DB2 Application Plan
	Conversion for DB2
	CLOB Activation in DB2
	BLOB Activation for DB2 (MVS)
	BLOB Read/Write Support in DB2 (MVS)

	Describing DB2 Data Sources
	DB2 Access Control
	DB2 CURRENT SQLID (MVS)
	DB2 Connection Support (DRDA) for Non-CLI DB2
	DB2 CONNECT TO and Level 1: CONNECT

	CREATE SYNONYM Command for DB2
	Setting the Scope of Logical Units of Work (MVS)
	SET AUTOaction on Event Command in DB2 (MVS)
	AUTOCLOSE in DB2
	AUTODISCONNECT in DB2

	DB2 Data Adapter Dialogue Manager Variables

	8. Getting Started in IMS
	IMS Hierarchical Structure
	IMS Sequence Fields
	IMS Secondary Indexes
	IMS Logical Relations
	IMS Search Fields
	IMS Symbolic Pointers

	IMS Access Methods
	IMS Control Blocks
	IMS Database Descriptions: The DBD
	Defining an Application’s Access to Data Sources: The PSB
	Describing a Data Source View and Communicating With IMS: The PCB
	IMS Key Sensitivity
	IMS Field Level Sensitivity
	IMS Status Codes
	IMS Key Feedback Area
	Application Control Block in IMS

	IMS DL/I Calls
	IMS Segment Search Arguments
	IMS Get Calls

	Mapping IMS Elements to the Server
	Describing the PSB: The FOCPSB
	Describing the Data Source: The IMS Master File
	Identifying the IMS Data Source
	Describing IMS Segments to the Server
	Describing IMS Fields to the Server
	Describing IMS Segments With Multiple Definitions to the Server
	Describing Variable Length IMS Segments to the Server
	Describing an IMS Secondary Index to the Server

	Mapping IMS and Server Relationships
	IMS Logical Relationships
	Alternating Between IMS Data Sources
	SQL Joins in IMS

	Describing IMS Data Sources
	FOCPSBs in IMS
	Required FOCPSB Attributes
	Extended FOCPSB Attributes in IMS

	IMS Master Files
	SEGNAME in IMS
	SEGTYPE in IMS
	PARENT in IMS
	FIELD NAME in IMS
	ALIAS in IMS
	USAGE in IMS
	ACTUAL in IMS
	Using an IMS Secondary Index
	Segment Redefinition in IMS: The RECTYPE Attribute
	Variable Length IMS Segments: The OCCURS Segment

	IMS Sample File Descriptions
	IMS DI21PART
	IMS PATDB01
	IMS EMPDB

	IMS Access Control
	IMS SET Command
	IMS PSB

	IMS Data Adapter Optimization
	IMS Record Selection Tests
	IMS Access Method Restrictions
	IMS Rules for Constructing SSAs From WHERE Tests
	Complex Screening Conditions in IMS
	Partial Key and Multi-Segment Requests in IMS
	Auto Index Selection

	IMS UPDATE
	General IMS UPDATE Guidelines
	Processing Not Supported in IMS UPDATE
	Commit and Rollback Processing in IMS
	Master File for IMS UPDATE

	9. Getting Started With Information Manager/2
	InfoMan Data Adapter
	IBM's Information/Management
	Information/Management Access
	InfoMan Data Adapter Functional Overview

	How the Server Works With Information/Management
	InfoMan Hardware and Software Requirements
	Configuring the InfoMan Data Adapter
	Server JCL for IBM Information/Management

	Defining the InfoMan Data Adapter User ID and Session ID
	PICA Parameters
	Setting Up the InfoMan Data Adapter User ID, Privilege Class Name, and Session ID
	Overriding the Default PICA Values in an Access File
	Additional InfoMan Access File Parameters

	InfoMan Access Control
	Server Security in InfoMan
	IBM Information/Management Database Security
	The AUTOIMAN Configuration File, IMANCONF
	Editing IMANCONF
	Maintaining Multiple Configuration Files in InfoMan
	Other InfoMan Editing Options

	Describing InfoMan Data Sources
	Executing AUTOIMAN
	Working With AUTOIMAN
	Movement Within Screens in InfoMan
	Help in InfoMan

	Master File Generation Facility in InfoMan
	PIDT Selection Panel in InfoMan
	Entering Data on the PIDT Selection Panel
	Using the F6 Search and F5 Rfind Keys on the PIDT Selection Panel
	Field Selection for Retrieval PIDT Name in InfoMan
	Using the F6 Search and F5 Rfind Keys on the Field Selection Screen in InfoMan
	F6 Search in InfoMan
	F5 Rfind in InfoMan
	Making Changes in Field Descriptions in InfoMan
	Selection in InfoMan

	Retrieval PIDT Name Confirmation in InfoMan
	Changing Your Selections in InfoMan
	Confirming Your Choices in InfoMan

	10. Getting Started in MODEL 204
	Overview
	Environment
	Ease of Use
	Efficiency
	Security
	Installing the MODEL 204 Data Adapter
	Linkage Editor Control Statements

	Preparing the Adapter Run-Time Libraries
	The MASTER Library
	The ACCESS Library
	The Adapter Load Library
	The ERRORS Library

	Meeting the Adapter Run-Time Requirements
	Specifying Account and File Passwords

	Mapping Concepts in MODEL 204
	MODEL 204 Files With One Logical Record Type
	MODEL 204 Files With Multiple Logical Record Types
	MODEL 204 Files With Multiply-Occurring Fields

	Mapping MODEL 204 and Server Relationships
	Dynamic Joins
	Embedded Joins
	Joining Unrelated MODEL 204 Files

	MODEL 204 Master Files
	File Attributes
	Segment Attributes
	Field Attributes
	OCCURS Attributes
	The ORDER Field: Tracking Sequence Within Multiply Occurring Fields

	MODEL 204 Access Files
	Account Declaration
	Segment Declarations
	Field Declarations

	Summary of Mapping Rules
	Advanced Reporting Techniques
	MODEL 204 HLI Calls
	Screening Conditions and MODEL 204 HLI Calls
	COUNT Processing

	Adapter Environmental Commands
	M204ACCNT and M204PASS Commands
	MAXMBUFF Command
	FTBL Command
	MISSING Command
	READWOL Command
	SINGLETHREAD Command
	M204IN SET ? Query Command
	Data Adapter Tracing Facility
	Customized Security Exits for MVS

	11. Getting Started in MQSeries
	MQSeries Data Adapter
	MQSeries Master File Attributes
	MQSeries Access Control
	MQDEF Command
	Writing Data into the MQSeries Using the HOLD Command
	Reading Data from MQSeries
	CREATE SYNONYM for the MQ Series Adapter
	Retrieving Foreign Messages From a Queue
	MQMSGID Fuse Function

	12. Getting Started in NOMAD
	Mapping Concepts in NOMAD
	Hierarchical Structure in NOMAD

	How the Data Adapter Accesses NOMAD
	Answer Set Generation in NOMAD
	Cartesian Products (NOMAD)

	Describing Data Sources in NOMAD
	NOMAD Master Files
	MISSING Attribute in NOMAD
	Arrays in NOMAD
	NOMAD Access Files

	NOMAD Access Control
	NOMAD Security
	SET DBNAME Command for NOMAD

	Creating File Descriptions With AUTONMD

	13. Getting Started in Oracle
	Server Commands for Oracle
	ORACHAR Setting
	CONVERSION for Oracle

	Enabling Array Blocking for SELECT and INSERT Requests for Oracle
	Describing Oracle Data Sources
	Oracle Access Control
	Oracle User Authentication
	ENGINE SQLORA SET Commands for Oracle
	Connecting to an Oracle Database Server
	Using Local, Platform Dependent Connection Variables in Oracle
	Access to a Remote Database Using Oracle Net8/SQL*NET Version 2
	SET DEFAULT_CONNECTION Command for Oracle
	Password Passthru Access for Oracle
	Using Operating System Authentication for Oracle
	SET CONNECTION_ATTRIBUTES Command Syntax for the Server Releases

	Oracle Support for DATABASE LINKs
	Creating Synonyms for Oracle

	14. Getting Started in SAP/R3
	Preparing the SAP R/3 Server Environment
	Accessing Multiple SAP R/3 Systems

	Access Control
	Describing SAP R/3 Data Sources
	SAP R/3 Master Files
	SAP R/3 Access Files
	The Primary Key in SAP R/3
	Creating Virtual Fields in SAP R/3
	Table Support
	Data Type Support
	Open/SQL Support

	Tracing Options

	15. Getting Started in Teradata
	Server Commands for Teradata
	Teradata Master Files
	Teradata Access Control
	The SET CONNECTION_ATTRIBUTES Command for Teradata Data Adapter
	Creating Synonyms for Teradata
	Thread Control Commands for Teradata

	Index

